Math, asked by vishalahir7034, 5 months ago

7cos²x+3sin²x=4(find general solution)​

Answers

Answered by Anonymous
7

Answer:

The solution for x is

x=\frac{\pi}{3},\frac{2\pi}{3},\frac{4\pi}{3},\frac{5\pi}{3}x=

Step-by-step explanation:

Given : Expression 7\cos^2x+3\sin^2x=47cos

To find : Solve the given expression ?

Solution:-

We solve the expression by splitting the term,

7\cos^2x+3\sin^2x=47cos

4\cos^2x+3\cos^2x+3\sin^2x=44cos

4\cos^2x+3(\cos^2x+\sin^2x)=44cos

We know, \cos^2x+\sin^2x=1cos

4\cos^2x+3(1)=44cos

4\cos^2x=14cos

\cos^2x=\frac{1}{4}cos

\cos x=\pm\frac{1}{2}cosx=±

I case : \cos x=\frac{1}{2}cosx=

x=\frac{\pi}{3}x=

\begin{gathered}x = 2\pi-\frac{\pi}{3} \\\\x =\frac{5\pi }{3}\end{gathered}

II case : \cos x=-\frac{1}{2}cosx=−

x=\pi-\frac{\pi}{3}=\frac{2\pi}{3}x=π−

\begin{gathered}x =\pi+\frac{\pi}{3} \\\\x =\frac{4\pi }{3}\end{gathered}

Therefore, The solution for x is

x=\frac{\pi}{3},\frac{2\pi}{3},\frac{4\pi}{3},\frac{5\pi}{3}x=

Answered by sandipandeka001
0

Answer:

Giroud pdkyzjtzkyskyslusluslusly

Similar questions