Math, asked by nikhil7781, 1 year ago

(7pq + 4ab)2...............​

Answers

Answered by ShrinkingViolet
131

Correct Question:-

 \sf(7pq + 4ab) {}^{2}

Using identity 1 :- \boxed{\sf{(a+b)^2=a^2+b^2+2ab}}

\sf(7pq + 4ab)\\   = \sf{(7pq)}^{2}  +  {(4ab)}^{2}  + 2 \times 7pq \times 4ab \\  =  \sf49 {p}^{2} {q}^{2}   + 16 {a}^{2}  {b}^{2}  + 56abpq

Hope you've understood the sum!

Answered by ItsTogepi
36

\sf{(7pq + 4 {ab})^{2} }

Using the formula:

\tt{ {a}^{2}  +  {b}^{2}    =  {a}^{2}  + 2ab +  {b}^{2} }

Here, a = 7pq and b = 4ab

\tt{7pq + 4ab}

\tt{  =  ({7pq})^{2} + 2.7pq.4ab +  {(4ab}^{2} ) }

\tt{ = 46{p}^{2}  {q}^{2}    + 56abpq + 16 {a}^{2}    {b}^{2}  }

\huge\underline\mathfrak\red{thankyou}

Similar questions