Math, asked by aman34590, 11 months ago

7sin^2A+3cis^2A=4, show that tanA=1/√3.​

Answers

Answered by ganesh3533
1

prove that your questions

Attachments:

aman34590: thanks
Answered by Anonymous
3

GIVEN:-

\large\sf{7 { \sin }^{2} a + 3 { \cos}^{2} a = 4}

\large\sf\green{Dividing\:both\:sides\:by\:{cos}^{2}A}

\large\sf\red{We\:get,}

\implies\large\sf{7{tan}^{2}A+3=4{sec}^{2}A}

\implies\large\sf{7{tan}^{2}A+3=4(1+{tan}^{2}A)}

\implies\large\sf{7{tan}^{2}A+3=4+4{tan}^{2}A}

\implies\large\sf{3{tan}^{2}A=1}

\implies\large\sf{{tan}^{2}A=\frac{1}{3}}

\implies\large\sf{tan\:A=\frac{1}{√3}}

Similar questions