7sin A - 24 COSA=0 then find then find the value of
Sec A
Answers
the answer is secθ=25/7
i hope this helpful for you
Answer:
- secA = 25/7
Step-by-step explanation:
Given:
- 7sinA - 24cosA = 0
To find:
- The value of secA
Solution:
⇒ 7sinA-24cosA = 0
⇒ 7sinA = 24cosA
On dividing cosA in both LHS and RHS,
⇒ 7sinA/cosA = 24cosA/cosA
As we know that, sinA/cosA = tanA,
⇒ 7tanA = 24
⇒ tanA = 24/7
tanA = Perpendicular/Adjacent Side = 24/7
Let Perpendicular side of the triangle be 24k
Let Adjacent side of the triangle be 7k
According to Pythagoras Theorm, we know that:
⇒ (Hypotenuse)² = (Perpendicular)²+(Adjacent Side)²
⇒ (Hypotenuse)² = (24k)²+(7k)²
⇒ (Hypotenuse)² = 576k²+49k²
⇒ (Hypotenuse)² = 625k²
⇒ Hypotenuse = √625k²
⇒ Hypotenuse = 25k
Hence, we found all the sides of triangles. Now, we know that:
⇒ secA = Hypotenuse/Adjacent Side
⇒ secA = 25k/7k
⇒ secA = 25/7
Hence, secA = 25/7
Know more:
→ sinA = Perpendicular/Hypotenuse
→ cosA = Adjacent Side/Hypotenuse
→ tanA = sinA/cosA = Perpendicular/Adjacent Side
→ cosecA = 1/sinA = Hypotenuse/Perpendicular
→ secA = 1/cosA = Hypotenuse/Adjacent Side
→ cotA = 1/tanA = cosA/sinA = Adjacent Side/Perpendicular