(7sqrt(3))/(sqrt(10+sqrt(3)))-(2sqrt(5))/(sqrt(6)+sqrt(5))-(3sqrt(2))/(sqrt(5)+3sqrt(2))
Answers
Solution :-
→ (7√3/√10 + √3) - (2√5/√6 + √5) - (3√2/√15 + 3√2)
Let,
- x = (7√3/√10 + √3)
- y = (2√5/√6 + √5)
- z = (3√2/√15 + 3√2)
so,
→ x = (7√3/√10 + √3)
rationalising the denominator,
→ x = 7√3 * (√10 - √3) / (√10 + √3)(√10 - √3)
→ x = 7√3 * (√10 - √3) / (10 - 3)
→ x = 7√3 * (√10 - √3) / 7
→ x = (√30 - 3)
now,
→ y = (2√5/√6 + √5)
rationalising the denominator,
→ y = 2√5 * (√6 - √5) / (√6 + √5)(√6 - √5)
→ y = 2√5(√6 - √5) / (6 - 5)
→ y = 2√30 - 2 * 5
→ y = (2√30 - 10)
and,
→ z = (3√2/√15 + 3√2)
→ z = 3√2 * (√15 - 3√2) / (√15 + 3√2)(√15 - 3√2)
→ z = 3√2(√15 - 3√2) / (15 - 18)
→ z = (-√2(√15 - 3√2)
→ z = (-√30 + 6)
then,
→ x - y - z
→ (√30 - 3) - (2√30 - 10) - (-√30 + 6)
→ √30 - 2√30 + √30 - 3 + 10 - 6
→ 2√30 - 2√30 + 10 - 9
→ 10 - 9
→ 1 (Ans.)
Learn more :-
if the positive square root of (√190 +√ 80) i multiplied by (√2-1) and the
product is raised to the power of four the re...
https://brainly.in/question/26618255
Answer:
solution = 114-41 root 6 by 30