Math, asked by bjsam777, 11 months ago

7tan(a-b)=5tan(a+b) then find the value of sin2a\sin2b​

Answers

Answered by MaheswariS
3

\textbf{Given:}

7\,tan(A-B)=5\,tan(A+B)

\textbf{To find:}

\text{The value of $\dfrac{sin2A}{sin2B}$}

\textbf{Solution:}

\text{Consider,}

7\,tan(A-B)=5\,tan(A+B)

\implies\,\dfrac{tan(A-B)}{tan(A+B)}=\dfrac{5}{7}.....(1)

\text{Now,}

\dfrac{sin2A}{sin2B}

=\dfrac{sin[(A+B)+(A-B)}{sin[(A+B)-(A-B)]}

=\dfrac{sin(A+B)\,cos(A-B)+cos(A+B)\,sin(A-B)}{sin(A+B)\,cos(A-B)-cos(A+B)\,sin(A-B)}

\text{Divide both numerator and denominator by $sin(A+B)\,cos(A-B)$}

=\dfrac{1+cot(A+B)\,tan(A-B)}{1-cot(A+B)\,tan(A-B)}

=\dfrac{1+\dfrac{tan(A-B)}{tan(A+B)}}{1-\dfrac{tan(A-B)}{tan(A+B)}}

\text{Using (1)}

=\dfrac{1+\dfrac{5}{7}}{1-\dfrac{5}{7}}

=\dfrac{\dfrac{7+5}{7}}{\dfrac{7-5}{7}}

=\dfrac{\dfrac{12}{7}}{\dfrac{2}{7}}

=\dfrac{12}{2}

=6

\therefore\textbf{The value of $\bf\,\dfrac{sin2A}{sin2B}$ is 6}

Find more:

Tan8a-tan5a-tan3a show that tan8a.tan5a.tan3a

https://brainly.in/question/5758781

Answered by knjroopa
1

Step-by-step explanation:

given 7tan(a-b)=5tan(a+b) then find the value of sin2a\sin2b

  • Given 7 tan (a – b) = 5 tan (a + b)      
  •   so tan (a – b) / tan (a + b) = 5/7
  •  Now sin (a – b) / cos (a – b)  / sin (a + b) / cos (a + b) = 5/7
  •         Sin (a – b) x cos(a + b) / cos (a – b) x sin(a + b) = 5/7
  •     Now we can write as  
  •            2 sin(a – b) cos (a + b) / 2 cos(a – b) sin (a + b) = 5/7
  •          [sin 2a – sin 2b / sin 2a + sin 2b = 5/7
  •        So we get  Sin 2a – sin 2b = 2 sin (a – b) cos (a + b)]
  •           So  Sin 2a + sin 2b = 2 cos(a – b) sin (a + b)
  •              By taking reciprocal we get
  •             (sin 2a + sin 2b) / (sin 2a – sin 2b) = 7/ 5
  • Now by comp 6 + 1 / 6 – 1
  •             Sin 2a / sin 2b = 6 / 1
  • Therefore sin 2a / sin 2b = 6

Reference link will be

https://brainly.in/question/16648416

Similar questions