7tan(a-b)=5tan(a+b) then find the value of sin2a\sin2b
Answers
Answered by
3
.....(1)
Find more:
Tan8a-tan5a-tan3a show that tan8a.tan5a.tan3a
https://brainly.in/question/5758781
Answered by
1
Step-by-step explanation:
given 7tan(a-b)=5tan(a+b) then find the value of sin2a\sin2b
- Given 7 tan (a – b) = 5 tan (a + b)
- so tan (a – b) / tan (a + b) = 5/7
- Now sin (a – b) / cos (a – b) / sin (a + b) / cos (a + b) = 5/7
- Sin (a – b) x cos(a + b) / cos (a – b) x sin(a + b) = 5/7
- Now we can write as
- 2 sin(a – b) cos (a + b) / 2 cos(a – b) sin (a + b) = 5/7
- [sin 2a – sin 2b / sin 2a + sin 2b = 5/7
- So we get Sin 2a – sin 2b = 2 sin (a – b) cos (a + b)]
- So Sin 2a + sin 2b = 2 cos(a – b) sin (a + b)
- By taking reciprocal we get
- (sin 2a + sin 2b) / (sin 2a – sin 2b) = 7/ 5
- Now by comp 6 + 1 / 6 – 1
- Sin 2a / sin 2b = 6 / 1
- Therefore sin 2a / sin 2b = 6
Reference link will be
https://brainly.in/question/16648416
Similar questions