7th term of an A. p is 1/9 and 9th term is 1/7.Find the 63rd term of the A. P.
Answers
Let a be the first term of and d be the common difference of the given AP. Then,
___________________
Answer:
Let a be the first term of and d be the common difference of the given AP. Then,
\bf T_{7} = \dfrac{1}{9}T
7
=
9
1
\bf \implies a + 6d = \dfrac{1}{9} - ①⟹a+6d=
9
1
−①
\bf T_{9} = \dfrac{1}{7}T
9
=
7
1
\bf \implies a + 8d = \dfrac{1}{7} - ②⟹a+8d=
7
1
−②
\bf On \: subtracting \: ① \: from \: ②, \: we \: getOnsubtracting①from②,weget
\bf (a + 8d) - (a + 6d) = \dfrac{1}{7} - \dfrac{1}{9}(a+8d)−(a+6d)=
7
1
−
9
1
\bf a + 8d - a - 6d = \dfrac{9}{63} - \dfrac{7}{63}a+8d−a−6d=
63
9
−
63
7
\bf 2d = \dfrac{9 - 7}{63}2d=
63
9−7
\bf 2d = \dfrac{2}{63}2d=
63
2
\bf d = \dfrac{2}{63 \times 2}d=
63×2
2
\bf d = \dfrac{\cancel{2}}{63 \times \cancel{2}}d=
63×
2
2
\bf d = \dfrac{1}{63}d=
63
1
\large \boxed{\bf d = \dfrac{1}{63}}
d=
63
1
\bf By, \: putting \: d = \dfrac{1}{63} \: in \: ①,By,puttingd=
63
1
in①,
\bf we \: getweget
\bf a + 6 \times \dfrac{1}{63} = \dfrac{1}{9}a+6×
63
1
=
9
1
\bf a + \cancel{6}^{2} \times \dfrac{1}{\cancel{63}_{21}} = \dfrac{1}{9}a+
6
2
×
63
21
1
=
9
1
\bf a + \dfrac{2}{21} = \dfrac{1}{9}a+
21
2
=
9
1
\bf a = \dfrac{1}{9} - \dfrac{2}{21}a=
9
1
−
21
2
\bf a = \dfrac{7}{63} - \dfrac{6}{63}a=
63
7
−
63
6
\bf a = \dfrac{7 - 6}{63}a=
63
7−6
\bf a = \dfrac{1}{63}a=
63
1
\large \boxed{\bf a = \dfrac{1}{63}}
a=
63
1
\bf Thus, \: a = \dfrac{1}{63} \: and \: d = \dfrac{1}{63}Thus,a=
63
1
andd=
63
1
\bf \therefore T_{63} = a + (63 - 1)d = a + 62d∴T
63
=a+(63−1)d=a+62d
\bf \implies T_{63} = \dfrac{1}{63} + 62 \times \dfrac{1}{63}⟹T
63
=
63
1
+62×
63
1
\bf \implies T_{63} = \dfrac{1}{63} + \dfrac{62}{63}⟹T
63
=
63
1
+
63
62
\bf \implies T_{63} = \dfrac{1 + 62}{63}⟹T
63
=
63
1+62
\bf \implies T_{63} = \dfrac{63}{63}⟹T
63
=
63
63
\bf \implies T_{63} = \cancel{\dfrac{63}{63}}⟹T
63
=
63
63
\bf \implies T_{63} = 1⟹T
63
=1
\large \boxed{\bf T_{63} = 1 }
T
63
=1
\bf Hence, \: 63rd \: term \: of \: given \: AP \: is \: 1.Hence,63rdtermofgivenAPis1.