Math, asked by ShinyDitto, 10 hours ago

7x + 1 = 2/7 Mathdude500 please​

Answers

Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Given equation is

\rm \: 7x + 1 = \dfrac{2}{7}  \\

On transposition, we get

\rm \: 7x = \dfrac{2}{7} - 1 \\

On taking LCM on RHS, we get

\rm \: 7x = \dfrac{2 - 7}{7} \\

\rm \: 7x = \dfrac{- 5}{7} \\

\bf\implies \:x \:  =  \:  -  \: \dfrac{5}{49}  \\

Verification :-

 \rm \: \red{\: Consider\:LHS}

\rm \: 7x + 1 \\

On substituting the value of x, we get

\rm \: =  \:  7 \times \bigg( - \dfrac{5}{49}  \bigg) + 1 \\

\rm \:  =  \:  -  \: \dfrac{5}{7}  + 1 \\

\rm \:  =  \:  \dfrac{ - 5 + 7}{7} \\

\rm \:  =  \:  \dfrac{2}{7} \\

\rm \: \red{\:=\:RHS}

Hence, Verified

\rule{190pt}{2pt}

In method of transposition,

 \red{\rm \:  +  \: changes \: to \:  -  \: } \\

 \red{\rm \: -  \: changes \: to \: +  \: } \\

 \red{\rm \: \times  \: changes \: to \:  \div   \: } \\

 \red{\rm \:  \div   \: changes \: to \:  \times   \: } \\

Answered by pradhanmadhumita2021
26

 \rm {Given \:  equation  \: is}

\rm\blue{ 7x + 1 = \dfrac{2}{7}}

 \rm{On \:  transposition, we \:  get}

 \rm \blue{7x = \dfrac{2}{7} - 1}

 \rm{On  \: taking \:  LCM  \: on  \: RHS, we \:  get}

\rm \blue{ 7x = \dfrac{2 - 7}{7}} \\\rm \blue{ 7x = \dfrac{- 5}{7}} \\\rm \blue{\implies \:x \: = \: - \: \dfrac{5}{49}}

Similar questions