Physics, asked by vc135052, 3 months ago

(-7x^2-5x)cosx differentiate with respect to x​

Answers

Answered by Anonymous
21

Question:-

\displaystyle\sf\dfrac{d}{dx}\:(-7x^2-5x)\:cos\:x

AnSwEr:-

  • use product rule

\displaystyle\bf\dfrac{d}{dx}(uv)=v\:\dfrac{du}{dx}+u\:\dfrac{dv}{dx}

  • u = -7x² - 5x
  • v = cos x

\displaystyle\sf\implies cos\:x\left(\dfrac{d}{dx}\:-5x-7x^2\right) + (-5x-7x^2)\left(\dfrac{d}{dx}\:cos\:x\right)

  • differentiate the sum term and factor out constants

\displaystyle\sf = (-5x-7x^2)\left(\dfrac{d}{dx}\:cos\:x\right)+\left[-5\left(\dfrac{d}{dx}\:x-7\:\dfrac{d}{dx}\:x^2\right)\right]cos\:x

\displaystyle\sf = (-5x-7x^2)\left(\dfrac{d}{dx}\:cos\:x\right)+cos\:x\:\left(-7\left(\dfrac{d}{dx}\:x^2\right)-1\times 5\right)

  • use power rule

\displaystyle\bf \dfrac{d}{dx}\:x^n = nx^{n-1}

  • n = 2
  • \displaystyle\sf \dfrac{d}{dx} x^2 = 2x

\displaystyle\sf\implies (-5x-7x^2)\left(\dfrac{d}{dx}\:cos\:x\right)+cos\:x\:(-5-7\times 2x)

  • use chain rule

\displaystyle\bf \dfrac{d}{dx}\:cos\:x = \dfrac{d\:cos\:u}{du}\:\dfrac{du}{dx}

  • u = x
  • \displaystyle\sf \dfrac{d}{du} (cos\:u)=\:-sin\:u

\displaystyle\sf\implies (-5-14x)\:cos\:x+(-5x-7x^2)\dfrac{d}{dx}\:x\:sin\:x

\displaystyle\boxed{\sf = -(5+14x)\:cos\:x+x(5+7x)\:sin\:x}


IICouchMasterII: hi
IICouchMasterII: Hellow
Anonymous: Amazing !♡~
IICouchMasterII: mst hun mai, tu bta be
IICouchMasterII: Achha
IICouchMasterII: teri I'd delete nhi hui sirf meri kyu hui -,-
Similar questions