Math, asked by saurav11292, 1 year ago

7x^2+9x-1=0 solve the quadratic equation ​

Answers

Answered by rishikapaul115
0

Answer:

Step-by-step explanation:

Attachments:

saurav11292: the answer is x=1/10 don't know how
Answered by AbhijithPrakash
9

Answer:

x=\dfrac{-9+\sqrt{109}}{14},\:x=\dfrac{-9-\sqrt{109}}{14}\quad\left(\mathrm{Decimal:\:}&x=0.10288\dots,x=-1.38859\dots\right)

Step-by-step explanation:

7x^2+9x-1=0

\mathrm{Solve\:with\:the\:quadratic\:formula}

  • \mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:} x_{1,\:2}=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=7,\:b=9,\:c=-1:\quad x_{1,\:2}=\dfrac{-9\pm \sqrt{9^2-4\cdot \:7\left(-1\right)}}{2\cdot \:7}

x=\dfrac{-9+\sqrt{9^2-4\cdot \:7\left(-1\right)}}{2\cdot \:7}

\dfrac{-9+\sqrt{9^2-4\cdot \:7\left(-1\right)}}{2\cdot \:7}

\mathrm{Apply\:rule}\:-\left(-a\right)=a

=\dfrac{-9+\sqrt{9^2+4\cdot \:7\cdot \:1}}{2\cdot \:7}

\sqrt{9^2+4\cdot \:7\cdot \:1}

9^2=81

=\sqrt{81+4\cdot \:7\cdot \:1}

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:7\cdot \:1=28

=\sqrt{81+28}

\mathrm{Add\:the\:numbers:}\:81+28=109

=\sqrt{109}

=\dfrac{-9+\sqrt{109}}{2\cdot \:7}

\mathrm{Multiply\:the\:numbers:}\:2\cdot \:7=14

=\dfrac{-9+\sqrt{109}}{14}

x=\dfrac{-9-\sqrt{9^2-4\cdot \:7\left(-1\right)}}{2\cdot \:7}

\dfrac{-9-\sqrt{9^2-4\cdot \:7\left(-1\right)}}{2\cdot \:7}

\mathrm{Apply\:rule}\:-\left(-a\right)=a

=\dfrac{-9-\sqrt{9^2+4\cdot \:7\cdot \:1}}{2\cdot \:7}

\sqrt{9^2+4\cdot \:7\cdot \:1}=\sqrt{109}

=\dfrac{-9-\sqrt{109}}{2\cdot \:7}

\mathrm{Multiply\:the\:numbers:}\:2\cdot \:7=14

=\dfrac{-9-\sqrt{109}}{14}

\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}

x=\dfrac{-9+\sqrt{109}}{14},\:x=\dfrac{-9-\sqrt{109}}{14}

Attachments:
Similar questions