Math, asked by omteja13, 3 days ago

7x+5/3=48/3- 4x/3. find the value of x​

Answers

Answered by TwilightShine
24

Answer -

  • The value of x is 44/3.

To find -

  • The value of x.

Step-by-step explanation -

\bf\implies\dfrac{7x + 5}{3}  =  \dfrac{48}{3}  -  \dfrac{4x}{3}

\bf\implies \dfrac{7x + 5}{3}  =  \dfrac{(48 \times 1) - (4x \times 1)}{3}

\bf\implies\dfrac{7x + 5}{3}  =  \dfrac{48 - 4x}{3}

\bf\implies3 \: (48 - 4x) = 3 \: (7x + 5)

\bf\implies144 - 12x = 21x + 15

\bf\implies144 - 15 = 21x + 12x

\bf\implies129 = 33x

\bf\implies  \cancel{\dfrac{129}{33}}  = x

\bf\implies \dfrac{43}{11}  = x

-----------------------------------------------------------

V E R I F I C A T I O N -

  • To check our answer, let's substitute the value of x in the equation and see whether LHS = RHS.

LHS :

 \longmapsto\rm \dfrac{7x + 5}{3}

 \longmapsto\dfrac{7 \times  \frac{43}{11} + 5 }{3}

 \longmapsto\dfrac{ \frac{301}{11}  + 5}{3}

\longmapsto \dfrac{ \frac{(301 \times 1) + (5 \times 11)}{11} }{3}

 \longmapsto\dfrac{ \frac{301 + 55}{11} }{3}

 \longmapsto\dfrac{ \frac{356}{11} }{3}

 \longmapsto\dfrac{356}{11}  \times  \dfrac{1}{3}

 \longmapsto\dfrac{356}{33}

RHS :

\longmapsto \rm \dfrac{48}{3}  -  \dfrac{4x}{3}

 \longmapsto\dfrac{48}{3}  -  \dfrac{4 \times  \frac{43}{11} }{3}

 \longmapsto\dfrac{48}{3}  -  \dfrac{ \frac{172}{11} }{3}

 \longmapsto\dfrac{48}{3}  -  \dfrac{172}{11}  \times  \dfrac{1}{3}

 \longmapsto\dfrac{48}{3}  -  \dfrac{172}{33}

 \longmapsto\dfrac{(48 \times 11) - (172 \times 1)}{33}

 \longmapsto\dfrac{528 - 172}{33}

 \longmapsto\dfrac{356}{33}

 \\

LHS = RHS.

Hence verified!!

________________________________

Answered by TrustedAnswerer19
73

Answer:

 \:  \:  \: \green { \boxed{  \bigstar \:  \:  \sf \: x =  \frac{43}{11} }}

Step-by-step explanation:

Given,

\sf\implies\dfrac{7x + 5}{3}  =  \dfrac{48}{3}  -  \dfrac{4x}{3} \\ \\ </p><p></p><p>\sf\implies \dfrac{7x + 5}{3}  =  \dfrac{(48 \times 1) - (4x \times 1)}{3} \\ \\ </p><p></p><p>\sf\implies\dfrac{7x + 5}{3}  =  \dfrac{48 - 4x}{3} \\ \\ </p><p></p><p>\sf\implies3 \: (48 - 4x) = 3 \: (7x + 5)\\ \\ </p><p></p><p>\sf\implies144 - 12x = 21x + 15\\ \\ </p><p></p><p>\sf\implies144 - 15 = 21x + 12x\\ \\ </p><p></p><p>\sf\implies 33x = 129\\ \\ </p><p></p><p>\sf\implies  x =  {\frac{ \cancel{129} ^{  \:43}}{ \cancel{33} _{\: 11}}} \:  \:  \:   \pink{\{  \sf\: divided \: by \: 3 \:  \}}\\  \\ </p><p></p><p>\sf\implies   x =\frac{43}{11} </p><p></p><p> \\  \\  \:  \:  \:  \:  \:  \green { \boxed{ \therefore \sf \: x =  \frac{43}{11} }}

Similar questions