Math, asked by vishwa140, 1 year ago

7x²+3x-4=0 solve by completing square method

Answers

Answered by mysticd
3

 \underline {\pink { Completing \:square \:method :}}

 Given \: Quadratic\:  Equation: \\7x^{2} + 3x - 4 = 0

/* Dividing each term by 7, we get */

 \implies x^{2} + \frac{3}{7} x - \frac{4}{7} = 0

 \implies x^{2} + \frac{3}{7} x = \frac{4}{7}

 \implies x^{2} +2 \times x \times  \frac{3}{2\times 7}  = \frac{4}{7}

 \implies x^{2} +2 \times x \times  \frac{3}{14}  = \frac{4}{7}

 Add\: both\: sides\: by \: \Big(\frac{3}{14}\Big)^{2},\:we \:get

 \implies x^{2} +2 \times x \times  \frac{3}{14}+ \Big(\frac{3}{14}\Big)^{2} =  \Big(\frac{3}{14}\Big)^{2} + \frac{4}{7}

 \implies \Big( x + \frac{3}{14}\Big)^{2} = \frac{9}{196} + \frac{4}{7}

 \implies \Big( x + \frac{3}{14}\Big)^{2} = \frac{9}{196} + \frac{4}{7}

 \implies \Big( x + \frac{3}{14}\Big)^{2} = \frac{252+4}{196}

 \implies \Big( x + \frac{3}{14}\Big)^{2} = \frac{256}{196}

 \implies \Big( x + \frac{3}{14}\Big)^{2} = \frac{16^{2}}{14^{2}}

 \implies \Big( x + \frac{3}{14}\Big)^{2} =\Big( \frac{16}{14}\Big)^{2}

 \implies x + \frac{3}{14}=\pm \frac{16}{14}

 \implies x = -\frac{3}{14}\pm \frac{16}{14}

 \implies x = \frac{-3\pm16}{14}

 \implies x =  \frac{-3+16}{14} \: Or \:  x = \frac{-3- 16}{14}

 \implies x =  \frac{13}{14} \: Or \:  x = \frac{-19}{14}

Therefore.,

 \green { x =  \frac{13}{14} \: Or \:  x = \frac{-19}{14}}

•••♪

Answered by harshitapalecha15
3

Answer:

-1 , 4/7

Step-by-step explanation:

Hope u guys like the way of explanation

Hope u understood this solution

Attachments:
Similar questions