Math, asked by WorstPrani, 1 day ago

7x³ = 45 solve and check​

Answers

Answered by talpadadilip417
0

Step-by-step explanation:

.

 \tt \red{{x}^{3}=\dfrac{45}{7}}

.

 \tt \pink{x=\sqrt[3]{\dfrac{45}{7}}}

Use Division Distributive Property: \sf{(\frac{x}{y})}^{a}=\frac{{x}^{a}}{{y}^{a}}

 \tt \blue{x=\dfrac{\sqrt[3]{45}}{\sqrt[3]{7}}}

 \red{ \tt \underline {check : -  }}

Let \sf x=\frac{\sqrt[3]{45}}{\sqrt[3]{7}}

\tt\blue{7{(\dfrac{\sqrt[3]{45}}{\sqrt[3]{7}})}^{3}=45}

→ Use Division Distributive Property: \sf{(\dfrac{x}{y})}^{a}=\dfrac{{x}^{a}}{{y}^{a}}

.

 \tt \red{7\times \dfrac{{(\sqrt[3]{45})}^{3}}{{(\sqrt[3]{7})}^{3}}}

→ Use this rule: \sf\sqrt[3]{{x}^{3}}=x

\tt\pink{7\times \dfrac{45}{{(\sqrt[3]{7})}^{3}}=45}

→ Use this rule: \sf\sqrt[3]{{x}^{3}}=x

\tt\orange{7\times \frac{45}{7}=45}

→ Cancel 7.

45=45

Hope It Help You.

Thanks.

Similar questions