Math, asked by palakupadhhyay, 2 months ago

7y - 2 / 5y - 1 = 3 + 7 y / 4+ 5 y ​

Answers

Answered by aryan073
6

Given :

• The given expression :

 \\  \bullet \bf \:  \frac{7y - 2}{5y - 1} =  \frac{3 + 7y}{4 + 5y}

To Find :

• The value of y in this expression =?

Solution :

•The given expression is

  \\  \bullet \sf \:  \frac{7y - 2}{5y - 1} =  \frac{3 + 7y}{4 + 5y}

By Cross multiplication on both sides :

 \\  \implies \sf \:  \frac{7y - 2}{5y - 1}  =  \frac{3 + 7y}{4 + 5y}  \\  \\  \\  \implies \sf \:   \bigg((7y - 2)(4 + 5y) \bigg) =  \bigg((5y - 1)(3 + 7y) \bigg) \\  \\  \\  \implies \sf \bigg((7y(4 + 5y) - 2(4 + 5y) \bigg) =  \bigg((5y(3 + 7y) - 1(3 + 7y) \bigg) \\  \\  \\  \implies \sf \:  \bigg(28y + 35 {y}^{2}  - 8 - 10y \bigg) =  \bigg(15y + 35 {y}^{2}  - 3 - 7y \bigg) \\  \\  \\  \implies \sf \:  \bigg(18y + 35 {y}^{2}  - 8 \bigg) =  \bigg(8 y + 35 {y}^{2}  - 3 \bigg) \\  \\  \\  \implies \sf \: 18y + 35 {y}^{2}  - 8 - 8y - 35 {y}^{2}  + 3 = 0 \\  \\  \\  \implies \sf \: 10y - 5 = 0 \\  \\  \\  \implies \sf \: y =  \frac{5}{10}  =  \frac{1}{2}  \\  \\  \\  \\  \implies \boxed{ \sf{y =  \frac{1}{2} }}

The value of y is

  \bullet\boxed{ \sf{y =  \frac{1}{2} }}

Answered by rk4846336
1

Answer:

 \frac{7y - 2}{5y - 1}  =  \frac{3 + 7y}{4  + 5y}  \\ (7y - 2)(4 + 5y) = (3 + 7y)(5y - 1) \\ 28y +  35y {}^{2}  - 8 - 10y = 15y - 3 + 35y {}^{2}  - 7y \\ 35 {y}^{2}  \: cancel \: on \: both \: sides \: we \: get \\ 18y - 8 = 8y - 3 \\ 18y - 8y = 8 - 3 \\ 10y = 5 \\ y =  \frac{5}{10}  \\  =  \frac{1}{2}

Mark it brainliest answer ✯✯

Have a great day (•‿•)

Similar questions