Math, asked by Iwillaskaquestion, 5 months ago

7y-5/4y+2 = 8/7 verify also

Answers

Answered by 24Karat
37

\huge\mathcal{\blue {\underline {\overline {\mid {\purple {Answer}}\mid}}}}

 \frac{7y - 5}{4y + 2}  =  \frac{8}{7}

(7y - 5) \times 7 = (4y + 2) \times 8

49y - 35 = 32y + 16

49y - 32y = 35 + 16

17y = 51

y =  \frac{51}{17}

y = 3

Verification :-

   \frac{7 \times 3 - 5}{4 \times 3 + 2}  =  \frac{8}{7}

 \frac{16}{14}  =  \frac{8}{7}

 =  \frac{8}{7}

 \huge \fbox{\orange{Peace✌}}

Answered by branilyqueen10
2

5x−4y+8=0⇒a1=5,b1=−4,c1=8

5x−4y+8=0⇒a1=5,b1=−4,c1=87x+6y−9=0⇒a2=7,b2=6,c2=−9

5x−4y+8=0⇒a1=5,b1=−4,c1=87x+6y−9=0⇒a2=7,b2=6,c2=−9∴a2a1=75

5x−4y+8=0⇒a1=5,b1=−4,c1=87x+6y−9=0⇒a2=7,b2=6,c2=−9∴a2a1=756−4=3−2

5x−4y+8=0⇒a1=5,b1=−4,c1=87x+6y−9=0⇒a2=7,b2=6,c2=−9∴a2a1=756−4=3−2c2c1=−98

5x−4y+8=0⇒a1=5,b1=−4,c1=87x+6y−9=0⇒a2=7,b2=6,c2=−9∴a2a1=756−4=3−2c2c1=−98=a2a1=b2b1

5x−4y+8=0⇒a1=5,b1=−4,c1=87x+6y−9=0⇒a2=7,b2=6,c2=−9∴a2a1=756−4=3−2c2c1=−98=a2a1=b2b1Therefore we have a unique solution.

5x−4y+8=0⇒a1=5,b1=−4,c1=87x+6y−9=0⇒a2=7,b2=6,c2=−9∴a2a1=756−4=3−2c2c1=−98=a2a1=b2b1Therefore we have a unique solution.Our system is consistent.

5x−4y+8=0⇒a1=5,b1=−4,c1=87x+6y−9=0⇒a2=7,b2=6,c2=−9∴a2a1=756−4=3−2c2c1=−98=a2a1=b2b1Therefore we have a unique solution.Our system is consistent.Answer verified by Toppr

5x−4y+8=0⇒a1=5,b1=−4,c1=87x+6y−9=0⇒a2=7,b2=6,c2=−9∴a2a1=756−4=3−2c2c1=−98=a2a1=b2b1Therefore we have a unique solution.Our system is consistent.Answer verified by Toppr1381 Views

5x−4y+8=0⇒a1=5,b1=−4,c1=87x+6y−9=0⇒a2=7,b2=6,c2=−9∴a2a1=756−4=3−2c2c1=−98=a2a1=b2b1Therefore we have a unique solution.Our system is consistent.Answer verified by Toppr1381 ViewsUpvote (27)

5x−4y+8=0⇒a1=5,b1=−4,c1=87x+6y−9=0⇒a2=7,b2=6,c2=−9∴a2a1=756−4=3−2c2c1=−98=a2a1=b2b1Therefore we have a unique solution.Our system is consistent.Answer verified by Toppr1381 ViewsUpvote (27)Was this answer helpful?

I HOPE it's HELPFUL for you


kavitadhangar2008: hi
kavitadhangar2008: frds
Similar questions