Math, asked by augku453, 8 months ago

8^2-(6+x)^2=3^2-x^2 Find x

Answers

Answered by Anonymous
8

Answer:

x = -19/12

Step-by-step explanation:

==: 8² - (6+x)² = 3² - x²

==: 64 - (36 + x² + 12x) = 9 - x²

==: 64 - 36 - x² - 12x = 9 - x²

==: 12x = 9 - 64 + 36

==: 12x = -19

==: x = -19/12

Pls mark my answer as brainlist

Pls follow me

Answered by Anonymous
15

Answer:

\\\\

x = \dfrac{19}{12}

\\\\\\

Given:

 \\\\{8}^{2}  -  {(6 + x)}^{2}  =  {3}^{2}  -  {x}^{2}

\\\\\\

To Find:

\\\\

Value of x.

\\\\\\

Answer:

\\

Explanation:

\\\\

 {8}^{2}  -  {(6 + x)}^{2}  =  {3}^{2}  -  {x}^{2}  \\  \\

We know that,

(a + b)^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\  \\

64 - 36  -   {x}^{2}   -  12x = 9 -  {x}^{2}  \\  \\ 28  -   {x}^{2}  +  {x}^{2}  + 12x - 9 = 0 \:  \:  \:  \\  \\  - 12x + 19 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  - 12x =  - 19  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ x =  \dfrac{19}{12}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\

Proof:

\\\\

64 -   \left(6 + \dfrac{19}{12} \right)^{2} = 9 - \left( \dfrac{19}{12} \right)^{2}  \\  \\ 64 -  {\left( \dfrac{91}{12} \right)}^{2}  = 9 -  \dfrac{361}{144}  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \\  \\ 64 -  \dfrac{8281}{144}  = 9 -  \dfrac{361}{144}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \dfrac{9216 - 8281}{144}  =  \dfrac{1296 - 361}{144}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \dfrac{935}{144}  =  \dfrac{935}{144}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\

Hence Proved.

Similar questions