Math, asked by reetfootball, 2 months ago

√8 + √50 / √162 - √98
Solve plz

Answers

Answered by mehuanjaan
2

Answer:

=2 \sqrt{2 }  + 5 \sqrt{2}  + 9 \sqrt{2}   - 7 \sqrt{2}   \\ =9 \sqrt{2} =√81

PLEASE MARK ME BRAINLIEST

Answered by MrImpeccable
5

ANSWER:

To Solve:

  • (√8 + √50)/(√162 - √98)

Solution:

We need to solve:

\implies\dfrac{\sqrt8+\sqrt{50}}{\sqrt{162}-\sqrt{98}}

We will now change the surds, into standard form so that, it is easy to solve.

1. √8

⇒ √8 = √(2×2×2) = 2√2

2. √50

⇒ √50 = √(2×5×5) = 5√2

3. √162

⇒ √162 = √(2×3×3×3×3) = 9√2

4. √98

⇒ √98 = √(2×7×7) = 7√2

So,

\implies\dfrac{\sqrt8+\sqrt{50}}{\sqrt{162}-\sqrt{98}}

\implies\dfrac{2\sqrt2+5\sqrt2}{9\sqrt2-7\sqrt2}

So,

\implies\dfrac{7\sqrt2}{2\sqrt2}

Cancelling, the √2,

\implies\dfrac{7\sqrt2}{2\sqrt2}

\implies\dfrac{7}{2}

Therefore,

\implies\bf\dfrac{\sqrt8+\sqrt{50}}{\sqrt{162}-\sqrt{98}}=\dfrac{7}{2}

Similar questions