Math, asked by dharadearyan, 2 months ago

8.) A and B together can do a piece of work in 12 days. B alone can finish it in 30 day
ow many days can A finish the same work?​

Answers

Answered by SachinGupta01
23

 \bf \:  \underline{Given} \:  :

 \sf \: A  \: and \:  B \:  together \:  can \:  do \:  a  \: piece \:  of \:  work \:  in \:  12  \: days.

 \sf \: B  \: alone  \: can \:  finish \:  it  \: in  \: 30  \: days.

 \bf \:  \underline{To \:  find} :

 \sf \: Number  \: of  \: days  \: that  \: A  \: will  \: take  \: to \:  finish \:  the  \: work.

 \bf \:  \star \:  \underline{So,  \: Let's \:  Start } \:  \star

 \sf \: Time \:  taken \:  by \:  A \:  and \:  B \:  to \:  finish  \: the \:  work   =   12  \:  days.

 \sf \: Both \:  (A  \: and  \: B)'s \:  1  \: day  \: work  \: =  \:  \pink{ \dfrac{1}{12} }

 \sf \: Time \:  taken \:  by  \: B \:  to  \: finish \:  the  \: work  =   30  \: days.

 \sf \: 1  \: day  \: work  =   \pink{\dfrac{1}{30} }

 \bf \: \underline{ Now},

 \sf \: A's \:  1  \: day  \: work :

 \boxed{ \sf \:(A  \: and  \: B)'s \:  1  \: day  \: work  \:  -  \: \sf \: B's \:  1  \: day  \: work.}

 \sf \:  \underline{Putting \:  the \:  values. }

 \sf \:  \longrightarrow \: \dfrac{1}{12} \:  -  \: \dfrac{1}{30}

 \sf \: To \:  subtract  \: them  \: we  \: have  \: to  \: make \:  the \:  denominator  \: same.

 \sf \:   \bigg(\dfrac{1}{12}  \:  \times \dfrac{5}{5} \:  =  \: \dfrac{5}{60} \bigg) \:  -  \bigg(\dfrac{1}{30}  \:  \times \dfrac{2}{2} \:  =  \: \dfrac{2}{60} \bigg)

 \sf \:  \longrightarrow \: \dfrac{5}{60} \:  -   \: \dfrac{2}{60}

 \sf \:   \longrightarrow \: \dfrac{5 - 2}{60}

 \sf \:   \longrightarrow \: \dfrac{3}{60}  \: =   \: \dfrac{1}{20}

 \sf \:  \underline{So, \:  Answer \:  =  \: 20 \:  days. }

 \purple{\sf \: So, \:  A  \: will  \: take \:  20 \:  days  \: to \:  finish \:  the \:  same  \: work.}

Similar questions