Math, asked by sshahaab45, 18 days ago

8(a+b)³+c³ resolve in to factor
step by step answer
answer must be :
(2a+2b+c)(4a²+4b²+8ab-2ac-2bc+c²)​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given expression is

\rm \: 8 {(a + b)}^{3} +  {c}^{3}  \\

can be rewritten as

\rm \: =  2 \times 2 \times 2 \times  {(a + b)}^{3} +  {c}^{3}  \\

\rm \: =   {2}^{3}  \times  {(a + b)}^{3} +  {c}^{3}  \\

\rm \: ={(2[a + b])}^{3} +  {c}^{3}  \\

\rm \: ={(2a + 2b)}^{3} +  {c}^{3}  \\

We know,

\boxed{ \rm{ \: {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2}) \: }} \\

So, here

\rm \: x = 2a + 2b \\

\rm \: y = c \\

So, on substituting the values in above identity, we get

\rm \:  = (2a + 2b + c)[ {(2a + 2b)}^{2} - (2a + 2b)c +  {c}^{2}] \\

\rm \:  = (2a + 2b + c)[ {(2a)}^{2} +  {(2b)}^{2} + 2(2a)(2b)   - 2ac - 2bc +  {c}^{2}] \\

\rm \:  = (2a + 2b + c)[ {4a}^{2} +  {4b}^{2} + 8ab   - 2ac - 2bc +  {c}^{2}] \\

Hence,

\rm\implies \: 8 {(a + b)}^{3}  \:  +  \:  {c}^{3} \\ \\  \rm \:  = (2a + 2b + c)[ {4a}^{2} +  {4b}^{2} + 8ab   - 2ac - 2bc +  {c}^{2}] \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions