Physics, asked by ar0879563, 1 month ago

8 A body moves in a straight line under the retardation 'a' which is given by a = bv. If the initial velocity is 2 m/s, the distance covered in time t = 2 seconds is (1) blog, (4) (2) / log, (1 + 46) (3) blog, (1 - 46 14) / 10g, (46-1) ime relatin The starting from​

Answers

Answered by Vespine
1

 \huge{ \underline{ \underline{ \mathbb{ \purple{SOLUTION:-}}}}}

Retardation is given by the expression

  \bigstar \: \tt{a=−bv^{2} } \\  \\  \tt{⇒ \dfrac{dv}{dt}=−bv^2}

Assuming that velocity changes by an amount dv in infinitesimal time interval dt. Above expression can be rewritten as

  \rightarrow \tt{ \dfrac{dv}{v^2}=−bdt}

Integrating both sides with respective variable we get

 \tt{∫ \dfrac{dv}{v^2}=−∫b dt} \\  \\  \tt{⇒− \dfrac{1}{v}=−bt+C}

where C is a constant of integration. To be ascertained from initial conditions.

 \underline{ \bold{At t=0 we  \: have v=2 ms^{−1}}}

We get

  • −12=C

Expression for velocity becomes

 \tt{− \dfrac{1}{v}=−bt− \dfrac{1}{2}}

 \tt{⇒ \dfrac{1}{v}= \dfrac{1+2bt}{2}}

 \tt{⇒ \: v= \dfrac{2}{1+2bt}}

 \tt{⇒ \dfrac{dS}{dt}= \dfrac{2}{1+2bt}}

Assuming that displacement dS takes place in infinitesimal time interval dt. Above expression can be rewritten as

 \tt{dS= \dfrac{2}{1+2bt}dt}

Integrating both sides with respective variables we get

 \tt{∫ dS=∫ \dfrac{ 2}{1+2bt}dt}

 \tt{⇒S= \dfrac{ln(|1+2bt|)}{b}+C1}

  • where C1 is a constant of integration.

At t=0, S=0. Inserting in above we get C1=0 and expression for displacement becomes.

 \tt{S= \dfrac{ln(|1+2bt|)}{b}}

Therefore, distance covered in time t=2 s

 \boxed{ \underline{ \frak{ \pink{S(2) =  \dfrac{ln(1+4b)}{b}}}}}

Similar questions