Math, asked by jigarsingh9346, 4 months ago

8. A field is in the form of a rhombus whose each side is 81 m and altitude is 25 m.
Find the side of a square field whose area is equal to that of the rhombus. Find the
difference in their perimeters.
T.

Answers

Answered by kashvigarg1002
2

Answer:

hello mate

I hope it helps you

Attachments:
Answered by CɛƖɛxtríα
43

Answer:

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎The side of the square field is 45 m and the difference between the perimeters of two fields is 144 m.

Explanation:

{\underline{\underline{\bf{Given:}}}}

  • The area of rhombus field is equal to the area of square field.
  • Side of the rhombus-shaped field = 81 m.
  • Height of the rhombus field = 25 m.

{\underline{\underline{\bf{Need\:to\:find:}}}}

  1. The side of the square field.
  2. The difference in the perimeters of rhombus-shaped and square fields.

{\underline{\underline{\bf{Formulae\:to\:be\:used:}}}}

\underline{\boxed{\sf{{Area}_{[Rhombus]}=bh\:sq.units}}}

\underline{\boxed{\sf{{Area}_{[Square]}=s^2\:sq.units}}}

\underline{\boxed{\sf{{Perimeter}_{[Rhombus]}=4s\:units}}}

\underline{\boxed{\sf{{Perimeter}_{[Square]}=4s\:units}}}

\:\:\:\:\:\:\:\:\:\:\sf{\bullet\:b\rightarrow base\:(side)}

\:\:\:\:\:\:\:\:\:\:\sf{\bullet\:h\rightarrow height}

\:\:\:\:\:\:\:\:\:\:\sf{\bullet\:s\rightarrow side}

{\underline{\underline{\bf{Solution:}}}}

1) SIDE of the square field:

As we know,

\rightarrowtail Area (Rhombus) = Area (Square)

We can find the side of the square by inserting the given measures in the equation:

\rightarrowtail{\sf{bh=s^2}}

\:\:\:\:\:\:\:\:\implies{\sf{81\times 25=s^2}}

\:\:\:\:\:\:\:\:\implies{\sf{2025=s^2}}

\:\:\:\:\:\:\:\:\implies{\sf{\sqrt{2025}=s}}

\:\:\:\:\:\:\:\:\implies{\underline{\underline{\frak{\red{45\:m=side}}}}}

2) DIFFERENCE between their perimeters:

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎To find the difference, first we've to find the perimeters of both the fields.

Rhombus-shaped field:-

By applying the formula,

\leadsto{\sf{4s\:units}}

\:\:\:\:\:\implies{\sf{4\times 81}}

\:\:\:\:\:\implies\underline{\bf{324\:m}}

Square field:-

Again, by applying the formula,

\leadsto{\sf{4s\:units}}

\:\:\:\:\:\implies{\sf{4\times 45}}

\:\:\:\:\:\implies\underline{\bf{180\:m}}

\orange\star Difference:-

\:\:\:\:\:\:\:\:\:\mapsto{\sf{324-180}}

\:\:\:\:\:\:\:\:\:\mapsto{\underline{\underline{\frak{\red{144}}}}}

______________________________________________

Similar questions