Math, asked by sampdadeshpande426, 2 months ago

8. A floor is 5 m long and 4 m wide. A square carpet of sides 3 m is laid on the floor. Find
the area of the floor that is not carpeted.
9. Five square flower beds each of sides 1 m are dug on a piece of land 5 m long and 4​

Answers

Answered by SachinGupta01
12

Solution : 8

 \bf \:  \underline{Given} :

 \sf \: Length \:  of  \: floor = 5  \: m

 \sf \: Breadth \:  of  \: floor = 4  \: m

 \sf \: A \:  square  \: carpet  \: of  \: sides \:  3 m \:  is  \: laid  \: on  \: the \: floor.

 \bf \:  \underline{To  \: find} :

 \sf \: We \:  have \:  to  \: find \:  area \:  of  \: the  \: floor  \: that \:  is  \: not \:  carpeted..

 \bf \:  \underline{ \underline{Solution }}

 \sf \: Area  \: of  \: floor = length   \times breadth

 \sf \:  \longrightarrow \: 5 m  \times  4 m = 20 m ^{2}

 \sf \: Now,  \: Side  \: of  \: square \:  carpet = 3 \:  m

 \sf \: Area \:  of  \: square  \: carpet  \rightarrow side \times side

 \sf \:  \longrightarrow \: 3 m  \times  3 m = 9 m ^{2}

 \sf \: Now,

 \sf Area \:of\: floor\: that \:is \:not\: carpeted \:=

 \underline{ \sf \: Area\: of\: floor \: - \:Area \:of \:square\: carpet}

\longrightarrow \sf \: 20 m^{2} \:  -  \: 9m^{2} = 11 m^{2}

 \underline{ \boxed{  \pink{\sf \: So, \: area  \: of \:  floor  \: that \:  is \:  not  \: carpeted = 11 m^{2} }}}

________________________________

Solution : 9

 \bf \:  \underline{Correct  \: question} :

Five square flower beds each of sides 1 m are dug on a piece of land 5 m long and 4 m wide. What is the area of the remaining part of the land?

 \bf \:  \underline{Given} :

Five square flower beds each of sides 1 m are dug on a piece of land 5 m long and 4 m wide.

 \bf \:  \underline{To \:  find} :

 \sf \: We \:  have \:  to \:  find  \: the  \: area  \: of  \: the \:  remaining  \: part  \: of \:  the \:  land.

 \bf \:  \underline{ \underline{Solution }}

 \sf \: Side \:  of \:  square \:  bed = 1 m

 \sf \: Area  \: of  \: square \:  bed = side  \times  side

\longrightarrow \sf\: 1 m \:   \times  \: 1m = 1m^{2}

 \sf \: Area  \: of  \: 5  \: square \:  beds = 1 \times  5 = 5 m^{2}

 \sf \: Now,

 \sf \:  \rightarrow \: Length \:  of  \: land = 5 m

 \sf \:  \rightarrow \: B readth \:  of \:  land = 4 m

 \sf \: Area  \: of \:  land = length  \times  B readth

\longrightarrow \sf\:5 m\:   \times  \: 4m = 20m^{2}

 \sf \: Area  \: of  \: remaining \:  part = Area \:  of \:  land  - Area \:  of \:  5 \:  flower  \: beds

\longrightarrow \sf\:20 m^{2}\:  -  \: 5m^{2} = 15m^{2}

 \underline{ \boxed{  \pink{\sf \: So,  \: area \:  of \:  remaining \:  part \:  of  \: a \:  land = 15 m^{2} }}}

Similar questions