Math, asked by tanishidevishi02, 10 months ago

8. A hemispherical bowl has radius of its rim equal to 2.1 cm . The total capacity
such bowls is nearly equal to (cm)

Answers

Answered by Brâiñlynêha
10

\huge\bf{\underline{\pink{Answer:-}}}

\sf Volume=19.404cm{}^{3}

\mathbb{\underline{\purple{EXPLANATION:-}}}

\bold{Given}\begin{cases}\sf{Radius\:of\: hemisphere\: is 2.1cm}\end{cases}

\bf{To\:find}

We have to find the capacity of bowls means find the volumeof bowl

\bf\underline{\underline{\red{According\:To\: Question:-}}}

\sf Volume \:of\: hemisphere=\frac{1}{2}\times Volume \:of\: sphere

\bold{we\:know}\begin{cases}\sf{Volume\:of\:sphere =\frac{4}{3}\pi r{}^{3}}\end{cases}

\sf Volume\:of\: hemisphere=\frac{1}{\cancel 2}\times \frac{\cancel{4}}{3}\pi r{}^{3}

\sf Volume\:of\: hemisphere=\frac{2}{3}\pi r{}^{3}

\bold{Radius}\begin{cases}\sf{ 2.1cm}\end{cases}

\sf Volume=\frac{2}{3}\pi r{}^{3}\\ \\ \bf \implies Take\pi=\frac{22}{7}\\ \\ \sf\leadsto Volume=\frac{2}{\cancel3}\times \frac{22}{\cancel7}\times \cancel{2.1}\times \cancel{2.1}\times 2.1\\ \\ \sf Volume=2\times 22\times 0.3\times 0.7\times 2.1\\ \\ \sf\leadsto Volume=44\times 0.21\times 2.1\\ \\ \sf\leadsto Volume=44\times 0.441\\ \\ \sf\implies Volume = 19.404cm{}^{3}

The volume of bowl :-

\sf\implies {\red{19.404cm{}^{3}}}

#BAL

#answerwithquality

Similar questions