8. A sum of Rs 16,000 amounts to Rs 18,000 in 3 years.Find the rate of interest.
Answers
Answer:
Amount = Rs. 18000
Time = 4 years
Principle = Rs. 16000
______________________
\sf{\bold{\green{\underline{\underline{To\:Find}}}}}
ToFind
⠀⠀⠀⠀
Rate = ??
______________________
\sf{\bold{\green{\underline{\underline{Solution}}}}}
Solution
⠀⠀⠀⠀
\sf{\red{\boxed{\bold{Interest = Amount - Principle }}}}
Interest=Amount−Principle
⠀⠀⠀⠀
\sf :\implies\: {\bold{Interest = Rs. 18000 - Rs. 16000}}:⟹Interest=Rs.18000−Rs.16000
⠀⠀⠀⠀
\sf :\implies\: {\bold{ Interest = Rs. 2000}}:⟹Interest=Rs.2000
⠀⠀
\sf{\red{\boxed{\bold{Interest = \dfrac{principle\times rate\times time}{100}}}}}
Interest=
100
principle×rate×time
⠀⠀⠀⠀
\sf :\implies\: {\bold{ 2000 = \dfrac{16000\times rate\times 4 }{100}}}:⟹2000=
100
16000×rate×4
⠀⠀
\sf :\implies\: {\bold{ 2000 = \dfrac{1600\times rate\times 4 }{10}}}:⟹2000=
10
1600×rate×4
⠀⠀
\sf :\implies\: {\bold{ 2000 = 160\times rate\times 4 }}:⟹2000=160×rate×4
⠀⠀
\sf :\implies\: {\bold{ r = \dfrac{2000}{160\times 4}}}:⟹r=
160×4
2000
⠀⠀
⠀⠀
\sf :\implies\: {\bold{ r = \dfrac{1000}{160\times 2}}}:⟹r=
160×2
1000
⠀⠀
\sf :\implies\: {\bold{ r = \dfrac{500}{160}}}:⟹r=
160
500
⠀⠀⠀⠀⠀
\sf :\implies\: {\bold{ r = \dfrac{50}{16}}}:⟹r=
16
50
⠀
\sf :\implies\: {\bold{ r = \dfrac{25}{8}}}:⟹r=
8
25
⠀⠀⠀⠀⠀
\sf :\implies\: {\bold{ r = 3 \dfrac{1}{8}}}:⟹r=3
8
1
Answer:
I don't really understand this but I can give you the formula
Step-by-step explanation:
Rate of Interest, R =
R = Rate of Interest
I = Interest
P = Principal
T = Time
So, R = (I x 100) divided by Principal x Time (in this case its 3 years)