8. A) Use Euclid's division lemma to show that the cube of any positive
integer is of the form 3K or 3K+1 or 3K+8?
Answers
Answered by
2
Step-by-step explanation:
Case1
a=3q
Bycubing. a= 27^3
A=3(9q^2). (9q^2 =k)
a=3k
Case 2.
A=(3q+1)^3
A=27^3+27q^2+9q+1
3(9q^3+9q^2+3q)+1. Take (9q^3+9q^2+3q=k)
So, 3k+1
Case3
A=(3q+2)^3
A=27^3+18q^2+12q+8
A=3(9q^3+6q^2+4q+2)+2.Take(9q^3+6q^2+4q=K)
) A=3K+2
So, cube of any positive
cube of any positiveinteger is of the form 3K or 3K+1 or 3K+8
Hope this will help you
Mark it brainliest
Attachments:
Similar questions