Math, asked by vishaldhir52, 10 months ago

8. An Altitude of a triangle is five-thirds the length of its corresponding base. If the altitude were
Increased by 8 cm and the base decrcased by 4 cm the area of the triangle would remain the same,
Find the base and altitude of the triangle.

answer this​

Answers

Answered by Anonymous
4

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Altitude is five third the length of base.

  • Area remains same when altitude is increased by 8 cm & base is decreased by 4 cm.

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • Base and altitude of the triangle.

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the altitude be 'x'

Let the base be 'y'

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

\purple\longrightarrow  \sf x = \dfrac { 5 } { 3 } \times y ------(1)

 \:\:

 \underline{\bold{\texttt{Area of triangle :}}}

 \:\:

 \bf \dashrightarrow \dfrac { 1 } { 2 } \times base \times height

 \:\:

 \underline{\bold{\texttt{Area of original triangle ,}}}

 \:\:

 \sf\longmapsto \dfrac { 1 } { 2 } \times y\times x -----(2)

 \:\:

 \underline{\bold{\texttt{Putting value of x in (2)}}}

 \:\:

 \sf\longmapsto \dfrac { 1 } { 2 } \times y\times \dfrac { 5y } { 3 } ----[Area 1 ]

 \:\:

 \underline{\bold{\texttt{New base :}}}

 \:\:

\purple\longrightarrow  \sf y - 4

 \:\:

 \underline{\bold{\texttt{New height :}}}

 \:\:

\purple\longrightarrow  \sf x + 8

 \:\:

 \underline{\bold{\texttt{Area of new triangle :}}}

 \:\:

 \sf\longmapsto \dfrac { 1 } { 2 } \times y - 4\times x + 8 -----(3)

 \:\:

 \underline{\bold{\texttt{Putting the value of x in (3)}}}

 \:\:

 \sf\longmapsto \dfrac { 1 } { 2 } \times y - 4\times  \dfrac { 5y } { 3 } + 8 -----[Area 2]

 \:\:

 \red{\underline \bold{According \: to \: the \ question :}}

 \:\:

Area remains same

 \:\:

 \red{\bold{</u><u>Area</u><u> </u><u>\: </u><u>1</u><u> </u><u>\: </u><u>=</u><u> </u><u>\: </u><u>Area</u><u> </u><u>\: </u><u>2</u><u>}}

 \:\:

 \sf\longmapsto \dfrac { 1 } { 2 } \times y\times \dfrac { 5y } { 3 }  \sf =  \sf </p><p>\dfrac { 1 } { 2 } \times y - 4\times  \dfrac { 5y } { 3 } + 8

 \:\:

 \sf \longmapsto \dfrac { 5y^2 } { 3 } = (y - 4) \times \dfrac { 5y + 24 } { 3 }

 \:\:

 \sf \longmapsto 5y^2 = y(5y + 24) -4(5y + 24)

 \:\:

 \sf \longmapsto 5y^2 = 5y^2 + 24y - 20y - 96

 \:\:

 \sf \longmapsto 4y = 96

 \:\:

 \sf \longmapsto y = \dfrac { 96 } { 4 }

 \:\:

 \bf \dashrightarrow y =  24 cm

 \:\:

 \underline{\bold{\texttt{Putting y = 24 in (1)}}}

 \:\:

 \sf \longmapsto x = \dfrac { 5 } { 3 } \times 24

 \:\:

 \sf \longmapsto x = 5 \times 8

 \:\:

 \bf\dashrightarrow x = 40 cm

 \:\:

Hence base is 24 cm & altitude is 40 cm

 \:\:

\rule{200}5

Answered by nidhirandhawa7
0

Answer:

base 24

Step-by-step explanation:

altitude 40

pls make it brainlest answer

Similar questions