Math, asked by gaminganup25, 2 months ago

(8) By selling an article for Rs. 384, a
shopkeeper incurs a loss of 4%. At what
price should he sell the article to gain 10%
?​

Answers

Answered by ImperialGladiator
15

Answer :

The article should be sold at ₹440 to gain 10%

Explanation :

S. P. (selling price) of the article : ₹384

Loss incurs = 4%

For selling it in 10% profit we need to calculate the C. P. (Cost price)

Using the formula :

 {\underline { \boxed{ {\sf C. P. =  \dfrac{100}{100  - loss\%}  \times S. P. }}}}

Substitute the given values :

\sf \dashrightarrow   \dfrac{100}{100 - 4}  \times 384 \\

\sf \dashrightarrow  \frac{100}{ \cancel{96}}  \times \cancel{384} \\

\sf \dashrightarrow 100 \times 4 \\

\sf \dashrightarrow 400 \\

\sf \therefore\underline{The \: CP \: is \: ₹400}

Now, calculate 10% profit in S. P.

Using the formula :

\sf \dashrightarrow S P =  \dfrac{100 + profit\%}{100}  \times CP

Where,

  • C. P. is ₹400
  • profit is 10%

On substituting the suitable values :

\sf \dashrightarrow  \dfrac{100 + 10}{100}  \times 400 \\

\sf \dashrightarrow  \frac{110}{100}  \times 400 \\

\sf \dashrightarrow 110 \times 4 \\

\sf \dashrightarrow 440 \\

\sf \therefore \underline{Required \: anwer : 440}

Answered by Anonymous
190

Answer:

{\Large{\underline{\frak{\pmb{Given}}}}}

  • ➥ By selling an article for Rs. 384, a shopkeeper incurs a loss of 4%

⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\Large{\underline{\frak{\pmb{To \:  Find}}}}}

  • ➥ What price should he sell the article to gain 10% ?

⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\Large{\underline{\frak{\pmb{Using \:  Formula }}}}}

\bigstar\: \sf \purple{ C.P} = \pink{\dfrac{100}{100-loss\%} \times S.P}

\bigstar \: \sf \purple{ S.P} =  \pink{\dfrac{100 + Profit\%}{100} \times C.P}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\Large{\underline{\frak{\pmb{Solution }}}}}

Finding the Cost Price of Article.

 {: \blue\implies\sf \pink{ C.P} = \purple{\dfrac{100}{100-loss\%} \times S.P}}

Here

  • ➥ S.P = ₹384
  • ➥ Loss % = 4%

⠀⠀⠀⠀⠀⠀⠀⠀⠀

On Substituting the values

 {: \blue\implies\sf \pink{ C.P} = \purple{\dfrac{100}{100-4} \times 384}}

 {: \blue\implies \sf \pink{ C.P} = \purple{\dfrac{100} {\cancel{94}} \times  \cancel{384}}}

  {:\blue \implies\sf \pink{ C.P} = \purple{100 \times 4}}

  {: \blue\implies\sf \pink{ C.P} = \purple{400}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \large \star \:  {\underline{\boxed{\sf{\pmb{ \pink{ C.P} ={ \purple{400 }}}}}}}  \: \star

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now Finding Selling Price to gain 10%.

{:\blue\implies\sf \pink{ S.P} =  \purple{\dfrac{100 + Profit\%}{100} \times C.P}}

Here

  • ➥ C.P = ₹400
  • ➥ Profite % = 10%

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

On Substituting the values

:\implies \sf \pink{ S.P} =  \purple{\dfrac{100 +10}{100} \times 400}

 :\implies\sf \pink{ S.P} =  \purple{\dfrac{110}{ \cancel{100}} \times  \cancel{400}}

 :\implies\sf \pink{ S.P} =  \purple{110 \times 4}

:\implies\sf \pink{ S.P} =  \purple{440}

 \:  \:  \:  \:  \:  \:  \:  \:  \: \star \:  {\large {\underline{ \boxed {\sf{\pmb{\pink{ S.P} =  \purple{440}}}}}}} \: \star

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\large{\underline{\frak{\pmb{Therefore }}}}}

  • The price should be ₹440 gain 10%.

⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\Large{\underline{\frak{\pmb{Additional  \: Information }}}}}

\begin{gathered}\small\boxed{\begin{array}{cc}\large\sf\dag \: {\underline{More \: Formulae}} \\ \\ \bigstar \: \sf{Gain = S.P – C.P} \\ \\ \bigstar \:\sf{Loss = C.P – S.P} \\ \\ \bigstar \: \sf{Gain \: \% = \Bigg( \dfrac{Gain}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{loss \: \% = \Bigg( \dfrac{loss}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{S.P = \dfrac{100+Gain\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100+Gain\%} \times S.P} \\ \\\bigstar \: \sf{ S.P = \dfrac{100-loss\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100-loss\%} \times S.P}\end{array}}\end{gathered}

Similar questions