Math, asked by pravati2002, 5 months ago

8 cube - ( 2 x-y) cube​

Answers

Answered by Sizzllngbabe
34

 \huge \sf{ \underline{ \underline{Question}}}

 \bf {8}^{3}  - ( 2 x-y) ^{3}

 \huge \sf{ \underline{ \underline{ \color{goldenrod}{Solution:- }}}}

\bf {8}^{3}  - ( 2 x-y) ^{3}

 \sf = ( {2x} ) ^{3}  - (2x - y)^{3}

 \sf \: By  \: using \:  identity  \\   \red{\boxed{(a³-b³=(a-b)(a²+ab+b²)}}

 \sf = (y)(4 {x}^{2}  + 4 {x}^{2}  +  {y}^{2}  - 4xy + 4 {x}^{2}  - 2xy)

  \large\purple {\boxed{ \sf =y(12 {x}^{2}  - 6xy +  {y}^{2}) }}

Step-by-step explanation:

 \huge \sf{ \red{ \underline{ \underline{Learn  \: more  \color{goldenrod}{ \checkmark}}}}}

Identity I: 

 \boxed{ \sf{(a + b)^2 = a^2 + 2ab + b^2}}

Identity II: 

 \boxed{ \sf{(a – b)^2 = a^2 – 2ab + b^2}}

Identity III: 

 \boxed{ \sf a^2 – b^2= (a + b)(a – b)}

Identity IV: 

 \boxed{ \bf{(x + a)(x + b) = x^2 + (a + b) x + ab}}

Identity V: 

 \boxed{ \sf{(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca}}

Identity VI:

 

 \boxed{ \sf{(a + b)^3 = a^3 + b^3 + 3ab (a + b)}}

Identity VII:

 

 \boxed{ \sf{(a – b)^3 = a^3 – b^3 – 3ab (a – b)}}

Identity VIII: 

 \boxed{ \sf{a^3 + b^3 + c^3 – 3abc = (a + b + c)(a^2 + b^2 + c^2 – ab – bc – ca)}}

 

Similar questions