Math, asked by kingkomaro14, 2 months ago

8. Evaluate the (Don't spam)_If you then your 10 answer will be reported_​

Attachments:

Answers

Answered by TYKE
2

Here is your answer mate in the attached picture

If you feel it's correct pls mark it as brainliest.

Attachments:
Answered by 12thpáìn
3

8. Evaluate

  •  \sf(i) \:  \dfrac{4}{ ({216)^{ \frac{ - 2}{3}  } } }  +  \dfrac{1}{ ({256)^{ \frac{ - 3}{4}  } } }  +  \dfrac{2}{ ({243)^{ \frac{ - 1}{5}  } } }

Solution

\sf \:  \:  \implies \: \:  \dfrac{4}{ ({216)^{ \frac{ - 2}{3}  } } }  +  \dfrac{1}{ ({256)^{ \frac{ - 3}{4}  } } }  +  \dfrac{2}{ ({243)^{ \frac{ - 1}{5}  } } }

\sf \:  \:  \implies \: \:  \dfrac{4}{ ({6 \times 6 \times 6)^{ \frac{ - 2}{3}  } } }  +  \dfrac{1}{ ({4 \times 4 \times 4  \times 4)^{ \frac{ - 3}{4}  } } }  +  \dfrac{2}{ ({3 \times 3 \times 3 \times 3 \times 3)^{ \frac{ - 1}{5}  } } }

\sf \:  \:  \implies \: \:  \dfrac{4}{ ({ {6}^{3} )^{ \frac{ - 2}{3}  } } }  +  \dfrac{1}{ ({ {4}^{4} )^{ \frac{ - 3}{4}  } } }  +  \dfrac{2}{ ({ {3}^{5} )^{ \frac{ - 1}{5}  } } }

\sf \:  \:  \implies \: \:  \dfrac{4}{ ({ {6} )^{3 \times  \frac{ - 2}{3}  } } }  +  \dfrac{1}{ ({ {4} )^{ 4 \times \frac{ - 3}{4}  } } }  +  \dfrac{2}{ ({ {3})^{5 \times  \frac{ - 1}{5}  } } }

\sf \:  \:  \implies \: \:  \dfrac{4}{ ({ {6} )^{ - 2  } } }  +  \dfrac{1}{ ({ {4} )^{  - 3  } } }  +  \dfrac{2}{ ({ {3})^{ - 1 } } }

\sf \:  \:  \implies \: \:  \dfrac{4}{ {   \dfrac{1}{ {6}^{2} }   } }  +  \dfrac{1}{ {   \dfrac{1}{ {4}^{3} }   } }  +  \dfrac{2}{ {  \dfrac{1}{3}  } }

\sf \:  \:  \implies \: \:  \dfrac{4}{ {   \dfrac{1}{ 36}  } }  +  \dfrac{1}{ {   \dfrac{1}{ 64 }   } }  +  \dfrac{2}{ {  \dfrac{1}{3}  } }

\sf \:  \:  \implies \: \:  4 \times 36 +  64  +  2 \times 3

\sf \:  \:  \implies \: \:  144 +  64  +  6

\sf \:  \:  \implies \: \:  144 +  70

\bf \:  \:  \implies \: \:  214\\\\\\

More to know (◠‿◕)

\\\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \bigstar \: \underline{\bf{}}\\ {\boxed{\begin{array}{c | c}  \frac{ \:  ~~~~~~~~~~\:  \:  \:  \:  \:\sf  Laws \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ } &\frac{ \: ~~~~~~~~~~ \:  \:  \:  \:  \:\sf Example  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ }\\ \sf \bigstar{a}^{m} \times {a}^{n} = {a}^{m + n} & \sf {a}^{2}  \times  {a}^{3} =  {a}^{2 + 3} =  {a}^{6}    \\ \\  \sf \bigstar{a}^{m} \div {a}^{n} = {a}^{m - n}& \sf {a}^{3} \div  {a}^{2}  =  {a}^{3 - 2} =  {a}^{1}     \\ \\ \sf{\bigstar \:  \:  \:  \:  \:  \: ( {a}^{m} ) ^{n} = {a}^{mn} } & \sf( {a}^{2} ) ^{3} = {a}^{2 \times 3} =  {a}^{6}  \\  \\  {\bigstar\sf a {}^{m} \times {n}^{m} = (ab) ^{m} } &\sf a {}^{2} \times {b}^{2} = (ab) ^{2}\\  \\  \sf\bigstar  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \: {a}^{0} = 1& \sf {2}^{0} = 1 \:  \:  \:  \:    \\  \\  \sf \bigstar  \:  \:  \: \: {\dfrac{ {a}^{m} }{ {b}^{m} }= \left( \dfrac{a}{b} \right) ^{m} }&  \sf{\dfrac{ {a}^{2} }{ {b}^{2} }=  \left( \dfrac{a}{b} \right) ^{2} }\\\\\bigstar~~~~~~~ \sf x^{\frac{m}{n} }=\sqrt[n]{x^m}\sf   = (\sqrt[n]{x})^m  & \sf x^{\frac{2}{3} }=\sqrt[3]{x^2} = (\sqrt[n]{x})^m\\   \\\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions