8. Factorise : (x² - 2x)2 - 11(x?- 2x) + 24.
Answers
Step-by-step explanation:
see this attachment .
hope it helps
Let, x² - 2x = p
∴ (x² - 2x)² - 11 (x² - 24) + 24
Substituting x² - 2x = p, we get:
= p² - 11p + 24
1 * 24 = 24 = 8 * 3 and 8 + 3 = 11:
= p² - (8 + 3) p + 24
Since (a + b) c = ac + bc, we get:
= p² - 8p - 3p + 24
Grouping of two consecutive terms give:
= p (p - 8) - 3 (p - 8)
Taking (p - 8) common, we have:
= (p - 8) (p - 3)
Putting p = x² - 2x, we get:
= (x² - 2x - 8) (x² - 2x - 3) ..... (1)
Now we factorise the in-bracket terms:
x² - 2x - 8 = x² - (4 - 2) x - 8
= x² - 4x + 2x - 8
= x (x - 4) + 2 (x - 4)
= (x - 4) (x + 2)
& x² - 2x - 3 = x² - (3 - 1) x - 3
= x² - 3x + x - 3
= x (x - 3) + 1 (x - 3)
= (x - 3) (x + 1)
Putting the factors in (1), we write:
(x² - 2x)² - 11 (x² - 2x) + 24
= (x² - 2x - 8) (x² - 2x - 3)
= (x - 4) (x + 2) (x - 3) (x + 1)
This is the required factorisation.