Math, asked by atutali29, 7 months ago


8. Find a quadratic polynomial whose sum
Product of its
zeroes are 1 by 4 and -1
respectively

Answers

Answered by jaidansari248
1

Answer:

format \: :   \\ let \: the \: requier \: valuable \: be \: x \\  {x}^{2}  - (sum \: of \: root)x + (product \: of \: root) = 0 \\  {x}^{2}  - ( \frac{1}{4} )x + ( - 1) = 0 \\  {x}^{2}  -  \frac{1}{4} x - 1 = 0 \\  \frac{ {x}^{2} }{1}  -  \frac{1}{4} x -  \frac{1}{1}  =  \frac{0}{1}  \\ take \: lcm \\  \frac{4 {x}^{2} - x - 4 }{4 }  = 0 \\ 4 {x}^{2}  - x - 4 = 0 \times 4 = 0

Answered by TheEternity
3

Answer:

Given,  \: Sum \: of \: zeroes \:  = 1/4</p><p> \\ and  \: product \:  of  \: zeros = \: -1 \\ </p><p>Then,  \: the \: quadratic  \: polynomial \\  = k \: [ {x}^{2} - (sum \: of \: zeroes)x + product \: of \: zeroes ] \\ k( {x}^{2}  - ( \frac{1}{4} )x - 1 \\  = k( {x}^{2}  -  \frac{x}{4}  - 1) \\  = k( \frac{4 {x}^{2} - x - 4 }{4 } ) \\ If \: k = 4, \: then \:  the \:  required \: quadratic \: polynomial \: is  \\⇒ \:  4 {x}^{2}  - x - 4</p><p>

Similar questions