Math, asked by questioner1234, 4 months ago

8. Find m if (m - 12)x² + 2(m - 12)x+ 2 = 0 has real and equal roots.​

Answers

Answered by Flaunt
83

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

Given :

(m - 12)x² + 2(m - 12)x+ 2 = 0

To Find :

Value of m

(m - 12)x² + 2(m - 12)x+ 2 = 0

We have this equation for equal and real roots:

\sf{\boxed{  {b}^{2}  - 4ac=0}}

here,a=m-12 ,b=2(m-12) and c=2

\sf[2 {(m - 12)]}^{2}  - 4(m - 12) \times 2 = 0

 \sf=  > 4 {m}^{2}  + 576 - 96m - 8m + 96 = 0

 \sf=  > 4 {m}^{2}  - 104m + 672 = 0

Taking 4 common:

 \sf=  >  {m}^{2}  - 26m + 168 = 0

 \sf=  > m(m - 14) - 12(m - 14) = 0

 \sf=  > (m - 14)(m - 12) = 0

\bold{\red{m = 12 \:, 14}}

So,the value of m will be 12 or 14.

Answered by Anonymous
0

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

Given :

(m - 12)x² + 2(m - 12)x+ 2 = 0

To Find :

Value of m

(m - 12)x² + 2(m - 12)x+ 2 = 0

We have this equation for equal and real roots:

\sf{\boxed{  {b}^{2}  - 4ac=0}}

here,a=m-12 ,b=2(m-12) and c=2

\sf[2 {(m - 12)]}^{2}  - 4(m - 12) \times 2 = 0

 \sf=  > 4 {m}^{2}  + 576 - 96m - 8m + 96 = 0

 \sf=  > 4 {m}^{2}  - 104m + 672 = 0

Taking 4 common:

 \sf=  >  {m}^{2}  - 26m + 168 = 0

 \sf=  > m(m - 14) - 12(m - 14) = 0

 \sf=  > (m - 14)(m - 12) = 0

\bold{\red{m = 12 \:, 14}}

So,the value of m will be 12 or 14.

Similar questions