Math, asked by nikhil554, 1 year ago

8. Find the sum of first 25terms of an AP whose nth term is 1-4n​

Answers

Answered by Anonymous
16

SOLUTION:-

Given:

The sum of first term 25 terms of an A.P. whose nth term is 1-4n.

Explanation:

We have,

 {}^{a} n = 1 - 4n

So,

The putting, n=1

 {}^{a} 1 = 1 - 4(1) \\  \\  {}^{a} 1 = 1 - 4 \\  \\  {}^{a} 1 =  - 3

&

Putting, n=2.

 {}^{a} 2 = 1  - 4(2) \\  \\  {}^{a} 2 = 1 - 8 \\  \\  {}^{a} 2 =  - 7

•Common difference= a2 -a1

=) -7 -(-3)

=) -7 + 3

=) d= -4.

•First term, a= -3.

Therefore,

Formula of the sum of the A.P;

 {}^{S} n =  \frac{n}{2}[2a + (n - 1)d]

So,

 {}^{s} 25 =  \frac{25}{2} [2( - 3) + (25 - 1)( - 4)] \\  \\ {}^{S}25 =  \frac{25}{2} [- 6 + 24 \times ( - 4)] \\  \\   {}^{S} 25 =  \frac{25}{2} [- 6 + ( - 96)]\\  \\   {}^{S} 25 =  \frac{25}{2} [- 6 - 96]\\  \\  {}^{S} 25 =  \frac{25}{2}  \times  (- 102) \\  \\  {}^{S} 25 = 25  \times ( - 51) \\  \\  {}^{S} 25 =  - 1275

Thus,

The sum of the first 25 terms of an A.P. whose nth term is 1-4n is -1275.

Follow Me :)

Similar questions