8. Find the values of y for which the distance between the point P(2, -3) and Q(10, y) is 10 units.
Answers
Answer:-
y = 6, -9
Given :-
Distance between P( 2, -3) and Q(10, y) is 10 units
To find :-
Value of y
Solution:-
If (x_1, y_1) and (x_2 , y_2) are the points distance between them is
Distance formula :-
So,
Substituting the values ,
Squaring on both sides,
Case - 1:-
Case - 2:-
Know more :-
Distance formula can also be used as
The distance of the point (x,y) from origin (0,0) is
Step-by-step explanation:
Answer:-
y = 6, -9
Given :-
Distance between P( 2, -3) and Q(10, y) is 10 units
To find :-
Value of y
Solution:-
If (x_1, y_1) and (x_2 , y_2) are the points distance between them is
Distance formula :-
\red {\sqrt{(x_1 - x_2) {}^{2} + (y_1 - y_2) {}^{2} } }
(x
1
−x
2
)
2
+(y
1
−y
2
)
2
So,
\begin{gathered}(x_1 ,\: y_1) = (2 ,\: - 3) \\ (x_2 ,\: y_2) = (10, \: y)\end{gathered}
(x
1
,y
1
)=(2,−3)
(x
2
,y
2
)=(10,y)
Substituting the values ,
\: 10 = \sqrt{(2 - 10) {}^{2} + ( - 3 - y) {}^{2} }10=
(2−10)
2
+(−3−y)
2
Squaring on both sides,
(10) {}^{2} = \bigg( \sqrt{(2 - 10) {}^{2} + ( - 3 - y) {}^{2} } \bigg) {}^{2}(10)
2
=(
(2−10)
2
+(−3−y)
2
)
2
100 = (2 - 10) {}^{2} + ( - 3 - y) {}^{2}100=(2−10)
2
+(−3−y)
2
100 = ( - 8) {}^{2} + ( - 3 - y) {}^{2}100=(−8)
2
+(−3−y)
2
100 = 64 + ( - ) {}^{2} (3 + y) {}^{2}100=64+(−)
2
(3+y)
2
100 = 64 + (3 + y) {}^{2}100=64+(3+y)
2
100 - 64 = (3 + y) {}^{2}100−64=(3+y)
2
36 = (3 + y) {}^{2}36=(3+y)
2
(6) {}^{2} = (3 + y) {}^{2}(6)
2
=(3+y)
2
(3 + y) = \pm \: 6(3+y)=±6
Case - 1:-
3 + y = + 6 \:3+y=+6
y = + 6 - 3y=+6−3
\red {y = + 3}y=+3
Case - 2:-
3 + y = \: - 63+y=−6
y = - 6 - 3y=−6−3
\red{y = \: - 9}y=−9
\red{ \boxed{So \: the \: value \: of \: y \: are \purple{\: 3 \: and \: - 9}}}
Sothevalueofyare3and−9
Know more :-
Distance formula can also be used as
\sqrt{(x_2- x_1)^2 + (y_2 - y_1)^2}
(x
2
−x
1
)
2
+(y
2
−y
1
)
2
The distance of the point (x,y) from origin (0,0) is
\sqrt{x^2 + y^2 }
x
2
+y
2