8. Find the volume, curved surface area and the total surface area of a
cone having base radius 35 cm and height 12 cm
Answers
Given:
The base radius of the cone is 35cm.
The height if the cone is 12cm.
To Find:
The volume of the cone = ?
The curved surface area of the cone = ?
The total surface area if the cone = ?
Solution:
To find the volume of the cone = ?
Volume of the cone = 1/3 πr²h.
Put the given values in the above formula.
⟹ 1/3 πr²h
⟹ 1/3 × 22/7 × 35² × 12
⟹ 22/7 × 35² × 4
⟹ 88×35²/7
⟹ 88×1225/7
⟹ 88×175
⟹ 15400cm³
∴ The volume of the cone is 15400 cm³.
Now,
Slant height of the cone = l = √(r² + h²)
⟹ √(r² + h²)
⟹ √1369
⟹ 37cm
∴ The slant height of the cone is 37cm.
Here,
CSA of the cone = πrl
⟹ 22/7 × 35 × 37
⟹ 22 × 5 × 37
⟹ 4070cm²
∴ The curved surface area (CSA) of the cone is 4070cm².
Therefore,
Total surface area (TSA) of the cone = πr(l + r).
⟹ πr(l + r)
⟹ 22/7 × 35 × (37 + 35)
⟹ 22 × 5 × 72
⟹ 7920cm²
∴ Total surface area (TSA) of the cone is 7920cm².
is given that
Radius of the cone =35 cm
Height of the cone =12 cm
We know that
Volume of the cone =1/3πr²h
By substituting the values
Volume of the cone = 1/3×22/7×35²+12
Volume of the cone =15400 cm ²
Slant height l= √r²+h²
=√35²+12²
=√1369
=37
Curved surface area of a cone =πrl
Total surface area of cone =22/7×35×37+35
Total surface area of cone =22×5×72
So we get
Total surface area of cone =7920 cm2