Math, asked by sarthakshruti999, 10 months ago

8. Find the zeros of the quadratic polynomial (8x2 - 4) and verify the
relation between the zeros and the coefficients.
find the zeros of the quadratic polynomial (51,2
10 and​

Answers

Answered by Anonymous
15

Correct Question:

Find the zeros of the quadratic polynomial \sf{8x^{2} - 4} and verify the relation between the zeros and the coefficients.

Answer:-

\sf{\frac{-1}{\sqrt2} \ and \ \frac{1}{\sqrt2} \ are \ the \ roots}

\sf{of \ the \ given \ quadratic \ polynomial. }

Given:

  • The given quadratic polynomial is \sf{8x^{2}-4.}

To find:

  • Zeroes of the polynomial.

Solution:-

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{8x^{2}-4}}

\sf{\implies{(2\sqrt2x)^{2}-2^{2}}}

\sf{According \ to \ the \ identity}

\boxed{\sf{a^{2}-b^{2}=(a+b)(a-b)}}

\sf{\implies{(2\sqrt2x+2)(2\sqrt2-2)}}

\sf{\implies{x=\frac{-2}{2\sqrt2} \ or \ x=\frac{2}{2\sqrt2}}}

\sf{\implies{x=\frac{-1}{\sqrt2} \ or \frac{1}{\sqrt2}}}

\sf\purple{\tt{\therefore{\frac{-1}{\sqrt2} \ and \ \frac{1}{\sqrt2} \ are \ the \ roots}}}

\sf\purple{\tt{of \ the \ given \ quadratic \ polynomial. }}

_______________________________________

\sf\blue{Verification:}

\sf{Let \ \alpha \ be \ \frac{-1}{\sqrt2} \ and \ \beta \ be \ \frac{1}{\sqrt2}}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{8x^{2}-4}}

\sf{Here, \ a=8, \ b=0 \ and \ c=-4}

\sf{\alpha+\beta=\frac{-1}{\sqrt2}+\frac{1}{\sqrt2}}

\sf{\therefore{\alpha+\beta=0...(1)}}

\sf{\frac{-b}{a}=0...(2)}

\sf{...from \ (1) \ and \ (2)}

\boxed{\sf{Sum \ of \ zeroes=\frac{-b}{a}}}

\sf{\alpha\beta=\frac{-1}{\sqrt2}\times\frac{1}{\sqrt2}}

\sf{\therefore{\alpha\beta=\frac{-1}{2}...(3)}}

\sf{\frac{c}{a}=\frac{-4}{8}}

\sf{\therefore{\frac{c}{a}=\frac{-1}{2}...(4)}}

\sf{...from \ (3) \ and \ (4)}

\boxed{\sf{Product \ of \ zeroes=\frac{c}{a}}}

\sf{Hence, \ verified. }

Similar questions