Math, asked by kavi444, 6 months ago

8. Find x
Find x3 – y3 , if x - y = 5 and xy = 14.​

Answers

Answered by indmrd
1

Answer:

x =7

x3 - y3 =335

Step-by-step explanation:

x - y = 5 n xy = 14

then,

xy = 14

=>x = 14/y

then, x-y=5

=> 14/y - y = 5

=> y2 + 5y -14 = 0

now solving this

y = 2

so x-y=5

=>x= 7

Answered by Anonymous
9

Question :-

  • \sf{Find~x^3 - y^3,~if~x - y~=~5~and~xy~=~14}

Solution :-

Cubing both sides

 \implies\sf{({x - y})^{3}  =  ({5})^{3}}

\bold{by \: using \: this \: identity} \: \implies \\ \boxed{\sf{{(a - b})^{3} =  {a}^{3}  -  {b}^{3}  - 3ab(a - b)}}

 \implies\sf { {x}^{3}  -  {y}^{3}  - 3xy(x - y) = 125}

\sf{{x}^{3} - {y}^{3}  - 3 \times (14 )\times (5) = 125}

\sf{{x}^{3} - {y}^{3}  - 210 = 125}

\sf{{x}^{3} - {y}^{3}} = 125  + 210

\sf{{x}^{3} - {y}^{3}} = 335

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Know more

  • Some useful identities :-
  • \boxed{a + b)^2 = a^2 + b^2 + 2ab}
  • \boxed{(a - b)^2 = a^2 + b^2 - 2ab}
  • \boxed{(a + b)^3 = a^3 + b^3 + 3ab(a + b)}
Similar questions