Math, asked by BrainlyIAS, 10 months ago

8 girls and 12 boys can finish the work in 10 days while 6 girls and 8 boys can finish it in 14 days.find the time taken by one girl alone and then one boy alone to finish the work.​
[Do it clear no copy or spam....]

Answers

Answered by mathdude500
8

Answer :-

Basic Concept :-

Representing Systems of Linear Equations from Word Problem -

Understand the problem.

  • Understand all the words used in stating the problem.

  • Understand what you are asked to find.

Translate the problem to an equation.

  • Assign a variable (or variables) to represent the unknown.

  • Clearly state what the variable represents.

Carry out the plan and solve the problem.

Let's do it now!!

\large\underline{\bold{Solution-}}

\begin{gathered}\begin{gathered}\bf \:Let - \begin{cases} &\sf{time \: tak \: en \: by \: girl  \: be \: x \: days} \\ &\sf{time \: tak \: en \: by \: boy  \: be \: y \: days} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \:Hence - \begin{cases} &\sf{girl \: 1 \: day \: work \:  = \dfrac{1}{x} } \\ &\sf{boy \: 1 \: day \: work \:  = \dfrac{1}{y} } \end{cases}\end{gathered}\end{gathered}

\large \underline{\tt \:{ According  \: to  \: statement }}

  • 8 girl and 12 boy can finished the work in 10 days

So,

\rm :\longmapsto\:8 \: girl\: 1 \: day \: work \:  = \dfrac{8}{x}

and

\rm :\longmapsto\:12 \: boy\: 1 \: day \: work \:  = \dfrac{12}{y}

So,

  • Total one day work is given by

\rm :\longmapsto\: \boxed{ \bf \: \dfrac{8}{x}  + \dfrac{12}{y}  = \dfrac{1}{10}}  -  -  - (1)

Again,

\large \underline{\tt \:{ According  \: to  \: statement }}

  • 6 girl and 8 boy can finished it in 14 days.

So,

\rm :\longmapsto\:6 \: girl \: 1 \: day \: work \:  = \dfrac{6}{x}

and

\rm :\longmapsto\:8 \: boy \: 1 \: day \: work \:  = \dfrac{8}{y}

So,

  • Total 1 day work is given by

\rm :\longmapsto\: \boxed{ \bf \: \dfrac{6}{x}  + \dfrac{8}{y}  = \dfrac{1}{14}}  -  -  - (2)

Now,

Solve equation (1) and (2), to get the values of x and y

Multiply equation (1) by 3 and equation (2) by 4, we get

\rm :\longmapsto\:\dfrac{24}{x}  + \dfrac{36}{y}  = \dfrac{3}{10}  -   - - (3)

and

\rm :\longmapsto\:\dfrac{24}{x}  + \dfrac{32}{4}  = \dfrac{4}{14}

\rm :\implies\:\dfrac{24}{x}  + \dfrac{32}{y}  = \dfrac{2}{7}  -  -  - (4)

Now, Subtracting equation (4) from equation (3), we get

\rm :\longmapsto\:\dfrac{4}{y}  = \dfrac{3}{10}  - \dfrac{2}{7}

\rm :\longmapsto\:\dfrac{4}{y}  = \dfrac{21 - 20}{70}

\rm :\longmapsto\:\dfrac{4}{y}  = \dfrac{1}{70}

\bf\implies \:y = 280 \: days

Substituting the value of y in equation (1), we get

\rm :\longmapsto\:\dfrac{8}{x}  + \dfrac{12}{280}  = \dfrac{1}{10}

\rm :\longmapsto\:\dfrac{8}{x}  + \dfrac{3}{70}  = \dfrac{1}{10}

\rm :\longmapsto\:\dfrac{8}{x}  = \dfrac{1}{10}  - \dfrac{3}{70}

\rm :\longmapsto\:\dfrac{8}{x} =  \dfrac{7 - 3}{70}

\rm :\longmapsto\:\dfrac{8}{x}  = \dfrac{4}{70}

\rm :\longmapsto\:\dfrac{2}{x}  = \dfrac{1}{70}

\bf\implies \:x = 140 \: days

\begin{gathered}\begin{gathered}\bf \:Hence- \begin{cases} &\sf{time \: tak \: en \: by \: girl \: \:  =  \: 140 \: days} \\ &\sf{time \: tak \: en \: by \: boy \:  \:  =  \: 280 \: days} \end{cases}\end{gathered}\end{gathered}

Answered by ayushkumarroutray
0

╔┓┏╦━━╦┓╔┓╔━━╗╔╗ ║┗┛║┗━╣┃║┃║╯╰║║║ ║┏┓║┏━╣┗╣┗╣╰╯║╠╣ ╚┛┗╩━━╩━╩━╩━━╝╚╝

\huge\color{red}\boxed{\colorbox{aqua}{αηsωєя࿐꧂ }}\downarrow

8 boys and 12 girls can finish the work in 10 days, while 6 boys and 8 girls can finish it in 14 days

Let x and y represent work done per day by boy and girl respectively:

8x + 12y = 1/10     

 6x  + 8y = 1/14    (multiplying by -3/2 to  eliminate the y variable)

8x + 12y = 1/10     

-9x  -12y = -3/28    (result of multiplying thru by -3/2 to  eliminate the y variable)

x = 1/140  and y = 1/280, work PER Day by each

x = 1/140  and y = 1/280, work PER Day by eachtime taken by 1 boy alone140 days and 1 girl alone 280 days to finish the work.

PLEASE MARK ME AS BRAINLIEST

Similar questions