8. Given P = {a,b,c,d,e},Q = {a,e,i,o,u} and R = {a,c,e,g, }. Verify the associative property of set intersection.
Answers
Answered by
0
Intersection of two sets :
The intersection of the sets a and b is the set of all the elements which belong to both A and B. It is denoted by A ∩ B (“ A intersection B”).
•if a and b do not have any element in common then A ∩ B= a null set = Ø
SOLUTION :
GIVEN :
P = {a,b,c,d,e} , Q = {a,e,i,o,u}, R = {a,c,e,g}
Intersection of sets is associative :
P ∩ (Q ∩ R) = (P ∩ Q) ∩ R
L.H.S :
P ∩ (Q ∩ R)
(Q ∩ R) = {a,e,i,o,u} ∩ {a,c,e,g}
= {a,e}
P ∩ (Q ∩ R) = {a,b,c,d,e} ∩ {a,e}
P ∩ (Q ∩ R) = {a,e}
R.H.S
(P ∩ Q) ∩ R
(P ∩ Q) = {a,b,c,d,e} ∩ {a,e,i,o,u}
= {a,e}
(P ∩ Q) ∩ R = {a,e} ∩ {a,c,e,g}
(P ∩ Q) ∩ R = {a,e}
L.H.S = R.H.S
Hence proved
HOPE THIS WILL HELP YOU...
The intersection of the sets a and b is the set of all the elements which belong to both A and B. It is denoted by A ∩ B (“ A intersection B”).
•if a and b do not have any element in common then A ∩ B= a null set = Ø
SOLUTION :
GIVEN :
P = {a,b,c,d,e} , Q = {a,e,i,o,u}, R = {a,c,e,g}
Intersection of sets is associative :
P ∩ (Q ∩ R) = (P ∩ Q) ∩ R
L.H.S :
P ∩ (Q ∩ R)
(Q ∩ R) = {a,e,i,o,u} ∩ {a,c,e,g}
= {a,e}
P ∩ (Q ∩ R) = {a,b,c,d,e} ∩ {a,e}
P ∩ (Q ∩ R) = {a,e}
R.H.S
(P ∩ Q) ∩ R
(P ∩ Q) = {a,b,c,d,e} ∩ {a,e,i,o,u}
= {a,e}
(P ∩ Q) ∩ R = {a,e} ∩ {a,c,e,g}
(P ∩ Q) ∩ R = {a,e}
L.H.S = R.H.S
Hence proved
HOPE THIS WILL HELP YOU...
Answered by
0
Hi ,
It is given that ,
P = { a , b , c , d , e }
Q = { a , e , i , o , u }
R = { a , c , e , g }
**************************************
Associative proporty :
P And ( Q and R ) = ( P and Q ) and R
*****************************************
LHS = P and ( Q and R )
= P and ( { a , e , i , o , u } and { a , c , e , g } )
= P and { a , e }
= { a , b , c , d } and { a , e }
= { a } ----- ( 1 )
RHS = ( P and Q ) and R
= ( { a ,b , c , d , e } and { a , e , i , o , u } ) and R
= { a , e } and R
= { a , e } and { a , c , e g }
= { a , e } -----( 2 )
From ( 1 ) and ( 2 ) ,
LHS = RHS
I hope this helps you.
: )
It is given that ,
P = { a , b , c , d , e }
Q = { a , e , i , o , u }
R = { a , c , e , g }
**************************************
Associative proporty :
P And ( Q and R ) = ( P and Q ) and R
*****************************************
LHS = P and ( Q and R )
= P and ( { a , e , i , o , u } and { a , c , e , g } )
= P and { a , e }
= { a , b , c , d } and { a , e }
= { a } ----- ( 1 )
RHS = ( P and Q ) and R
= ( { a ,b , c , d , e } and { a , e , i , o , u } ) and R
= { a , e } and R
= { a , e } and { a , c , e g }
= { a , e } -----( 2 )
From ( 1 ) and ( 2 ) ,
LHS = RHS
I hope this helps you.
: )
Similar questions