8. If 10 =
를
then 1087 = ?
Answers
Answer:
TOFIND,
\sf\dashrightarrow perimeter\:of\:rectangle.⇢perimeterofrectangle.
USING FORMULA,
\sf\large\:therefore diagonal\:of\:the\:rectangle = \sqrt{(breadth)^2+(length)^2}thereforediagonaloftherectangle=
(breadth)
2
+(length)
2
\sf\therefore 13= \sqrt{(b)^2+(12)^2}∴13=
(b)
2
+(12)
2
\sf\therefore 13= \sqrt{(b)^2+144}∴13=
(b)
2
+144
\sf\therefore (13)^2= (b)^2+144∴(13)
2
=(b)
2
+144
\sf\therefore 169=(b)^2+144∴169=(b)
2
+144
\sf\therefore 169-144=b^2∴169−144=b
2
\sf\therefore b^2= 25∴b
2
=25
\sf\therefore b= \sqrt{25}∴b=
25
\sf\therefore b= \pm 5∴b=±5
\sf\therefore note:- \:breadth\:is\:never\:negative,∴note:−breadthisnevernegative,
therefore,
\sf\dashrightarrow breadth\:of\:rectangle\:is\:5\:cm⇢breadthofrectangleis5cm
\large{\boxed{\bf{\therefore breadth=5cm}}}
∴breadth=5cm
NOW,
WE KNOW,
BREADTH =5CM
LENGTH=12CM
\sf\therefore finding\:the\:perimeter\:of\:rectangle,∴findingtheperimeterofrectangle,
USING FORMULA,
\sf\large\therefore perimeter=2 \times (length+breadth)∴perimeter=2×(length+breadth)
\sf\implies 2 \times (12+5)⟹2×(12+5)
\sf\implies 2 \times (17)⟹2×(17)
\sf\implies 34cm⟹34cm
\large{\boxed{\bf{\therefore perimeter\:of\:rectangle\:is\:34cm}}}
∴perimeterofrectangleis34cm
__________________
✯ADDITIONAL INFORMATION,
✯DIAGRAM OF RECTANGLE,
$$\setlength{\unitlength}{1.6mm}\begin{picture}(5,6)\put(0,25){\line(1,0){35}}\put(0,0){\line(1,0){35}}\put(0,0){\line(0,1){25}}\put(35,0){\line(0,1){25}}\put(17,-2){5cm}\put(18,-2){}\put(35,15){34cm}\put(18,0){ }\end{picture}$$
FEW FORMULAS FOR LEARNING,
AREA OF SQUARE=(SIDE)²
PERIMETER OF SQUARE = 4 ×(SIDE)
AREA OF TRIANGLE=1/2 × base ×height
AREA OF TRAPEZIUM= 1/2 × (A+B)
VOLUME OF CUBE =(L)³
VOLUME OF CUBOID= L×B×H
VOLUME OF CONE = 1/3 πr²h
VOLUME OF CYLINDER=πr²h