Math, asked by kyusra815, 10 months ago

8. If a=10 and d=3 for an A.P. find the
*
sum of the first 15 terms.
Your answer​

Answers

Answered by atahrv
4

Answer:

 \huge \boxed{s_{15} = 465}

Step-by-step explanation:

Given:-

  • a=10 (first term)
  • d=3 (common difference)

To Find:-

s_{15} \: (sum \: of \: 15 \: terms)

Formula Used:-

s_{n} =  \frac{n}{2}  \times [2a + (n - 1) \times d]

Solution:-

s_{n} =  \frac{n}{2}  \times [2a + (n - 1) \times d] \: ,where \: \boxed{a = 10}, \: \boxed{d = 3} \: and \:  \boxed{ n = 15}

\implies s_{15} =  \frac{15}{2} [2(10) + (15 - 1)(3)]

\implies s_{15} =  \frac{15}{2} [2(10) + (14)(3)]

\implies s_{15} =  \frac{15}{2} \times 2 [10 + (7)(3)]

\implies s_{15} = 15 (10 + 21)

\implies s_{15} = 15  \times 31

\implies \boxed{s_{15} = 465}

Therefore,

Therefore,The Sum of 15 terms of this A.P. is 465.

One More formula to Remember:-

a_n = a + ( n- 1) \times d

Answered by anugk2003
0

Answer:

Step-by-step explanation:

Given

A= 10,d=3,S15=??

So

Formula = Sn= n/2(2a+(n-1)d)

By substituting we get

15/2(2×10+(15-1)3)

On solving .....

15/2(20+(14×3))

= 15/2(20+42)

=15×62/2

Ans= 465

Similar questions