8. If A = B = 45°, show that :
(i) sin (A - B) = sin A cos B - cos A sin B.
Answers
Given :-
A = B = 45°
To prove :-
sin (A - B ) = sinA cosB - cosA sinB
To know :-
- sin0° = 0
- sin45° = 1/√2
- cos45 = 1/√2
Solution :-
Substitute value of A,B in given equation
A = 45° , B = 45°
sin (A - B ) = sinA cosB - cosA sinB
sin (45-45) = (sin45 × cos45) - (cos45 × sin45)
sin0° =( 1/√2 × 1/√2 ) - ( 1/√2 × 1/√2 )
0 = 1/2 - 1/2
0 = 0
Hence LHS = RHS
Proved !!
Know more:-
cos(A + B) = cosAcosB - sinAsinB
cos ( A - B) = cosA cosB + sinAsinB
tan ( A +B ) = tanA + tanB / 1 - tanAtanB
tan( A-B) = tanA - tanB/1 + tanAtanB
cot ( A + B ) = cotBcotA -1 / cotB + cotA
cot ( A - B ) = cotB cotA + 1/ cotB - cotA
tan(45+ A) = 1+tanA/1 - tanA
tan (45 - A ) = 1-tanA/1 + tanA
Trignometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
Trignometric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trignometric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj