8. () If A + B = 90°, then express cos B in terms of simplest trigonometric ratio of 4
(ii) If X + Y = 90°, then express cos X in terms of simplest trigonometric ratio of Y
9. (1) If A + B = 90°, sin A = a, sin B = b, then prove that
Saya² + b 2 = 1
(b)/tan A=
Answers
➦ Q.8
Given,A+B=90°
In equation (1) , multiplying both the sides by cos
In this known, Sin θ = Cos θ (90°-θ)
Given ,X + Y=90°
In this known, Sin θ = Cos θ (90°-θ)
In equation (1) , multiplying both the sides by cos
➦ Q.9
GIVEN :- A + B = 90° , Sin A = Sin a , Sin B= Sin b
Now ,
∴{ A + B = 90°
∴B = 90° - A}
➣Let's Recall
➛sin(90°−x) = cos x
➛cos(90°−x) = sin x
➛tan(90°−x) = cot x
➛cot(90°−x) = tan x
➛sec(90°−x) = csc x
➛csc(90°−x) = sec x
Answer:
Given,A+B=90°
⇒B=90°-A...(1)⇒B=90°−A...(1)
In equation (1) , multiplying both the sides by cos
⇒ \cos(B) = \cos(90° - A)⇒cos(B)=cos(90°−A)
In this known, Sin θ = Cos θ (90°-θ)
⇒ \cos(B) = \sin(A)⇒cos(B)=sin(A)
Given ,X + Y=90°
⇒ \cos X = \cos(90° -Y )⇒cosX=cos(90°−Y)
In this known, Sin θ = Cos θ (90°-θ)
⇒x = 90° - y...(1)⇒x=90°−y...(1)
In equation (1) , multiplying both the sides by cos
⇒ \cos X = \sin Y⇒cosX=sinY
➦ Q.9
GIVEN :- A + B = 90° , Sin A = Sin a , Sin B= Sin b
Now ,
LHS =a² + b² = { \sin }^{2} A + { \sin }^{2} BLHS=a²+b²=sin
2
A+sin
2
B
={ \sin }^{2} A + { \sin }^{2} (90°-A)=sin
2
A+sin
2
(90°−A)
⇒{ \sin }^{2} A + { \cos }^{2} A⇒sin
2
A+cos
2
A
∴{ A + B = 90°
∴B = 90° - A}
∴1 = RHS∴1=RHS
➣Let's Recall
➛sin(90°−x) = cos x
➛cos(90°−x) = sin x
➛tan(90°−x) = cot x
➛cot(90°−x) = tan x
➛sec(90°−x) = csc x
➛csc(90°−x) = sec x