8. If a/b=b/c=c/d then prove that
(a3 + b3 + CE)/
(b3 +c3+d3)=a/d
Answers
Answered by
0
Answer:
a/b=b/c=c/d= 1/k(let)
b=ak ,…………………(1)
c=bk. ………………….(2)
d=ck……………………..(3)
Putting b=ak. from eqn. (1) in eqn. (2)
c=ak^2………………….(4)
Putting c=ak^2 from eqn. (4) in eqn. (3),
d=ak^3…………………..(5)
To prove :- (a^3+b^3+c^3)/(b^3+c^3+d^3) = a/d
L.H.S.
=(a^3+b^3+c^3)/(b^3+c^3+d^3)
Putting b=a.k…….(1). c=a.k^2………..(4). and. d=a.k^3…………(5)
=(a^3+a^3.k^3+a^3.k^6)/(a^3.k^3+a^3.k^6+a^3.k^9)
=a^3(1+k^3+k^6)/a^3.k^3(1+k^3+k^6).
= 1/k^3
Putting k^3= d/a from eqn. (5)
= 1/(d/a)
=a/d. Proved.
Similar questions