Math, asked by sharmasrishti487, 1 day ago

8. If b1 and b2 be the length of perpendicular drawn from the points
 \sqrt{ {a }^{2} -  {b}^{2}  }
and
 -  \sqrt{ {a}^{2}  -  {b}^{2} }
upon the line
{x \cos( \beta )  \div a} + y \sin( \beta  \div b)  = 1
Then show that b1×b2=
 {b}^{2}

Answers

Answered by mathdude500
4

Appropriate Question :-

If  b_1\:and\:b_2 be the length of perpendicular drawn from the points  (\sqrt{ {a }^{2} - {b}^{2} },0) and  (- \sqrt{ {a}^{2} - {b}^{2} }, 0) upon the line

{x \cos( \beta ) \div a} + y \sin( \beta) \div b = 1

Then show that  b_1 \times b_2= {b}^{2}

\large\underline{\sf{Solution-}}

Given equation of line is

\rm \: \dfrac{x}{a}cos\beta   + \dfrac{y}{b}sin\beta  = 1 \\

can be rewritten as

\rm \: bxcos\beta  + aysin\beta  = ab \\

\rm \: bxcos\beta  + aysin\beta  -  ab = 0 -  -  - (1) \\

Now,

\rm \: b_1 \\

\rm \:  = distance \: from \: ( \sqrt{ {a}^{2} -  {b}^{2}}, \: 0) \: on \: line \: (1) \\

\rm \:  =  \: \bigg |\dfrac{b \sqrt{ {a}^{2}  -  {b}^{2}} cos\beta  + 0 - ab}{ \sqrt{ {b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } }\bigg | \\

\rm \:  =  \: \bigg |\dfrac{b \sqrt{ {a}^{2}  -  {b}^{2}} cos\beta - ab}{ \sqrt{ {b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } }\bigg | \\

Now, Consider

\rm \: b_2 \\

\rm \:  = distance \: from \: ( -  \sqrt{ {a}^{2} -  {b}^{2}}, \: 0) \: on \: line \: (1) \\

\rm \:  =  \: \bigg |\dfrac{ - b \sqrt{ {a}^{2}  -  {b}^{2}} cos\beta  + 0 - ab}{ \sqrt{ {b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } }\bigg | \\

\rm \:  =  \: \bigg |\dfrac{ - b \sqrt{ {a}^{2}  -  {b}^{2}} cos\beta - ab}{ \sqrt{ {b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } }\bigg | \\

\rm \:  =  \: \bigg |\dfrac{ - (b \sqrt{ {a}^{2} + {b}^{2}} cos\beta + ab)}{ \sqrt{ {b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } }\bigg | \\

\rm \:  =  \: \bigg |\dfrac{b \sqrt{ {a}^{2} + {b}^{2}} cos\beta + ab}{ \sqrt{ {b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } }\bigg | \\

Now, Consider

\rm \: b_1  \times b_2 \\

\rm \:  = \bigg |\dfrac{b \sqrt{ {a}^{2}  -  {b}^{2}} cos\beta - ab}{ \sqrt{ {b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } }\bigg| \times \bigg |\dfrac{b \sqrt{ {a}^{2}  -  {b}^{2}} cos\beta + ab}{ \sqrt{ {b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } }\bigg|  \\

\rm \:  = \bigg |\dfrac{b \sqrt{ {a}^{2}  -  {b}^{2}} cos\beta - ab}{ \sqrt{ {b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } } \times \dfrac{b \sqrt{ {a}^{2}  -  {b}^{2}} cos\beta + ab}{ \sqrt{ {b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } }\bigg|  \\

\rm \:  = \bigg |\dfrac{ {b}^{2}({a}^{2}  -  {b}^{2}) cos^{2} \beta -  {a}^{2}  {b}^{2} }{{b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } \bigg|  \\

\rm \:  = \bigg |\dfrac{ {b}^{2}[({a}^{2}  -  {b}^{2}) cos^{2} \beta -  {a}^{2}]}{{b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } \bigg|  \\

\rm \:  = \bigg |\dfrac{ {b}^{2}[{a}^{2} {cos}^{2}\beta-{b}^{2}cos^{2} \beta -  {a}^{2}]}{{b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } \bigg|  \\

\rm \:  = \bigg |\dfrac{ {b}^{2}[ - {a}^{2}(1 -  {cos}^{2}\beta)-{b}^{2}cos^{2} \beta ]}{{b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } \bigg|  \\

\rm \:  = \bigg |\dfrac{ {b}^{2}[ - {a}^{2}{sin}^{2}\beta-{b}^{2}cos^{2} \beta ]}{{b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } \bigg|  \\

\rm \:  = \bigg |\dfrac{ -  {b}^{2}[{a}^{2}{sin}^{2}\beta + {b}^{2}cos^{2} \beta ]}{{b}^{2}  {cos}^{2} \beta  +  {a}^{2} {sin}^{2}\beta } \bigg|  \\

\rm \:  =  \:  | -  {b}^{2} |  \\

\rm \:  =  \:  {b}^{2}  \\

Hence,

\rm\implies \:\rm \: \boxed{ \rm{  \: \:b_1  \times b_2 =  {b}^{2}  \:  \: }} \\

\rule{190pt}{2pt}

Formula Used :-

The perpendicular distance (d) drawn from the point (p, q) on the line ax + by + c = 0 is given by

\boxed{ \rm{ \:d \:  =  \: \bigg | \frac{ap + bq + c}{ \sqrt{ {a}^{2} +  {b}^{2}  } }\bigg | \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

Different forms of equations of a straight line

1. Equations of horizontal and vertical lines

Equation of line parallel to x - axis passes through the point (a, b) is y = b.

Equation of line parallel to y - axis passes through the point (a, b) is x = a.

2. Point-slope form equation of line

Equation of line passing through the point (a, b) having slope m is y - b = m(x - a)

3. Slope-intercept form equation of line

Equation of line which makes an intercept of c units on y axis and having slope m is y = mx + c.

4. Intercept Form of Line

Equation of line which makes an intercept of a and b units on x - axis and y - axis respectively is x/a + y/b = 1.

5. Normal form of Line

Equation of line which is at a distance of p units from the origin and perpendicular makes an angle β with the positive X-axis is x cosβ + y sinβ = p.

Similar questions