8) if secß + banß =p Then express The value
of sin in terms of op
'
Answers
Answered by
8
Correct Question:-
If sec θ + tan θ = p then express the value of sin θ in terms of p.
Answer:-
Given:
sec θ + tan θ = p -- equation (1).
We know that;
sec² θ - tan² θ = 1
using a² - b² = (a + b)(a - b) we get;
⟹ (sec θ + tan θ)(sec θ - tan θ) = 1
⟹ p(sec θ - tan θ) = 1. [∵ From equation (1) ]
⟹ sec θ - tan θ = 1/p -- equation (2).
Adding equations (1) & (2) we get;
⟹ sec θ + tan θ + sec θ - tan θ = p + 1/p
⟹ 2sec θ = (p² + 1)/p
⟹ sec θ = (p² + 1)/2p
Now;
From equation (1);
sec θ + tan θ = p
using tan θ = sin θ *(1/cos θ) in LHS we get;
⟹ sec θ (1 + sin θ) = p
[∵ 1/cos θ = sec θ]
Substitute the value of sec θ here.
⟹ (1 + sin θ) (p² + 1) / 2p = p
⟹ (1 + sin θ)(p² + 1) = 2p²
⟹ 1 + sin θ = 2p² / p² + 1
⟹ sin θ = (2p² / p² + 1) - 1
⟹ sin θ = (2p² - p² - 1) / p² + 1
⟹ sin θ = (p² - 1)/(p² + 1)
∴ The value of sin θ is p² - 1/p² + 1.
Similar questions