Math, asked by jagadishpatanakar815, 1 month ago

8. If Sin A=3/4 calculate Cos A and tan A

Answers

Answered by Shantanu0701
50

Answer:

\frac{3}{2.64}

Step-by-step explanation:

Given: sin A = 3/4

Using square trignometric indentity cos²a + sin²a = 1

Solution:

cos A = \sqrt{1-sin^2A}

         = \sqrt{1-(\frac{3}{4}) ^2}

         = \sqrt{1-\frac{9}{16}}

         =\sqrt{\frac{7}{16}}

         = \frac{2.64}{4}

tan A = \frac{sin A}{cos A}

         = \frac{\frac{3}{4} }{\frac{2.64}{4} }

         = \frac{3}{2.64}

Answered by LaCheems
23

{\boxed{\red{A}}}{\boxed{\green{N}}}{\boxed{\purple{S}}}{\boxed{\orange{W}}}{\boxed{\red{E}}}{\boxed{\green{R}}}

To Solve:

  • CosA and TanA

Given:

  • SinA = 3/4

Solⁿ:

SinA = P/H = 3/4

Perpendicular = 3

Hypotenuse = 4

Pythagoras Theorem:

H² = B² + P²

(4)² = B² + (3)²

16 = B² + 9

16 - 9 = B²

7 = B²

√7 = B

So,

CosA = B/H

CosA = B/H= √7 / 4

TanA = P/B

= 3/7

HOPE IT HELPS

MARK BRAINLIEST PLS :)

Attachments:
Similar questions