Math, asked by rupam1990singh, 2 months ago

8. If the side of a square is increased
by 25%, then its area is increased
by :​

Answers

Answered by polavarapuravikumar
0

Step-by-step explanation:

Let the side of square to be x

Then the area =X2

As per problem

The side of square is increased by 25% = 25%×x

=25/100×x

=x/4

The new area =(x/4)2

=X2/16

Answered by priyasamanta501
7

\underbrace \text{Answer:-}

Let the side of the square be a.

Then, area=

 \tt{Increased  \: side:a + a \times  \frac{25}{100} }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  =  \tt{ \frac{5a}{4} }

 \rm{Area: \frac{5a}{4}  \times  \frac{5a}{4} } =  \frac{25 {a}^{2} }{16}

Increased in area: 25a²/16-a² = 9a²/16

 \sf{Increased\%:  \frac{ 9 {a}^{2} }{16 \times  {a}^{2} }  \times 100}

 \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =   \tt{ \frac{ {9a}^{2} }{ \cancel{16}} \times  \frac{1}{ {a}^{2} }   \times  \cancel{100}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  =  \tt{\frac{9 \times 25}{4} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: =    \bf \red{56.25\%}

Similar questions