Math, asked by nikhilpatel6527, 2 months ago


8. If x² + 1/x² = 7 and x ≠ 0; find the value of :
7x³ + 8x - 7/x³- 8/x

Answers

Answered by guptavirag002
7

Answer:

64√5

Step-by-step explanation:

Using a³-b³=(a-b)(a²+b²+ab) , you can easily simplify the expression that is asked.

Attachments:
Answered by shadowsabers03
11

We need to find the value of,

\longrightarrow P=7x^3+8x-\dfrac{7}{x^3}-\dfrac{8}{x}

\longrightarrow P=7x^3-\dfrac{7}{x^3}+8x-\dfrac{8}{x}

\longrightarrow P=7\left(x^3-\dfrac{1}{x^3}\right)+8\left(x-\dfrac{1}{x}\right)\quad\quad\dots(1)

Let,

\longrightarrow x-\dfrac{1}{x}=p

Cubing,

\longrightarrow\left(x-\dfrac{1}{x}\right)^3=p^3

\longrightarrow x^3-3x+\dfrac{3}{x}-\dfrac{1}{x^3}=p^3

\longrightarrow x^3-\dfrac{1}{x^3}-3\left(x-\dfrac{1}{x}\right)=p^3

\longrightarrow x^3-\dfrac{1}{x^3}-3p=p^3

\longrightarrow x^3-\dfrac{1}{x^3}=p^3+3p

Then (1) becomes,

\longrightarrow P=7\left(p^3+3p\right)+8p

\longrightarrow P=7p^3+29p\quad\quad\dots(2)

Given,

\longrightarrow x^2+\dfrac{1}{x^2}=7

Subtracting 2,

\longrightarrow x^2+\dfrac{1}{x^2}-2= 7-2

\longrightarrow\left(x-\dfrac{1}{x}\right)^2=5

\longrightarrow x-\dfrac{1}{x}=\pm\sqrt{5}

\longrightarrow p=\pm\sqrt{5}

Then (2) becomes,

\longrightarrow P=7(\pm5\sqrt5)+ 29(\pm\sqrt5)

\longrightarrow\underline{\underline{P=\pm64\sqrt5}}

Similar questions