Math, asked by jadhavadi047, 9 months ago

8. In the given figure ZAPB = 105°. Find the measure of the
ZATB
А​

Attachments:

Answers

Answered by Anonymous
3

 \mathcal {\orange {SOL:-}}

∠APB = 105°

APB =1/2m(arcAB)

.....inscribed angle

105 × 2 = m(arcAB)

m(arcAB) = 210°

 \tt \red{now,</strong><strong>}</strong><strong> </strong><strong>

m(arcAB) + m(arcAPB) =360°

....Full circle

210 + m(arcAPB) = 360

m(arcAPB) = 360 - 210

m(arcAPB) = 150°

° AOB = m(arcAPB)

....central angle

° AOB = 150°

 \tt \red{now,}

In TAOB Sum of all angles of quadrilateral is 360°

∠ATB + ∠TBO + ∠AOB +

∠TAO = 360°

ATB + 90° + 150° + 90° = 360°

..... {Tangent theorem for 90°}

ATB + 330 = 360°

ATB = 360 - 330

ATB = 30°

 \mathcal {\red {MEASURE \: OF \: ANGLE \: ∠ATB = 30° }}

Similar questions